

An Interview with

Donald Knuth

1974 ACM Turing Award Recipient

Interviewed by: Edward Feigenbaum

March 14, 2007 and March 21, 2007

Mountain View, California

This transcript and the interview on which it is based is from the files of the Computer History
Museum in Mountain View, California. It is used here by the ACM with Kind permission from

the Museum.

CHM Reference number: X3926.2007,
© 2007 Computer History Museum

DK: Donald Knuth, The 1974 ACM Turing Award Recipient

EF: Edward Feigenbaum, a professor at Stanford University

EF: My name is Edward Feigenbaum. I’m a professor at Stanford University, in the Computer
Science Department. I’m very pleased to have the opportunity to interview my colleague and
friend from 1968 on, Professor Don Knuth of the Computer Science Department. Don and I
have discussed the question of what viewers and readers of this oral history we think there are.
We’re orienting our questions and comments to several groups of you readers and viewers.
First, the generally intelligent and enlightened science-oriented person who has seen the field
of computer science explode in the past half century and would like to find out what is
important, even beautiful, and what some of the field’s problems have been. Second, the
student of today who would like orientation and motivation toward computer science as a field
of scholarly work and application, much as Don and I had to do in the 1950s. And third, those
of you who maybe are not yet born, the history of science scholar of a dozen or 100 years from
now, who will want to know more about Donald Knuth, the scientist and programming artist,
who produced a memorable body of work in the decades just before and after the turn of the
millennium. Don and I share several things in our past in common. Actually, many things. We
both went to institutes of technology, I to Carnegie Institute of Technology, now Carnegie
Mellon University, and Don to Case Institute of Technology, now Case Western Reserve. We
both encountered early computers during that college experience. We both went on to take a
first job at a university. And then our next job was at Stanford University, in the new
Computer Science Department, where we both stayed from the earliest days of the department.
I’d like to ask Don to describe his first encounter with a computer. What led him into the world
of computing? In my case, it was an IBM 701, learned from the manual. In Don’s case, it was
an IBM Type 650 that had been delivered to Case Institute of Technology. In fact, Don even
dedicated one of his major books to the IBM Type 650 computer. Don, what is the story of
your discovery of computing and your early work with this intriguing new artifact?

DK: Okay. Thanks, Ed. I guess I want to add that Ed and I are doing a team thing here; next week,
I’ll be asking Ed the questions that he’s asking me today. We thought that it might be more fun
for both of us and, also for people who are listening or watching or reading this material, to see
the symmetrical approach instead of having a historian interviewing us. We’re colleagues,
although we work in different fields. We can give you some slants on the thing from people
who sort of both have been there. We’re going to be covering many years of the story today, so
we can’t do too much in-depth. But we also want to do a few things in depth, because the
defining thing about computer science is that computer science plunges into things at low
levels as well as sticking on high level. Since we’re going to cover so many topics, I’m sure
that I won’t sleep tonight because I’ll be saying to myself, “Oh, I should’ve said such and such
when he asked me that question”. So I think Ed and I also are going to maybe add another little
thing to this oral interview, where we might want to add a page or two of afterthoughts that
come to us later, because then I don’t have to be so careful about answering every question that
he asks me now. The interesting thing will be not only the wrong answer that pops first in my

mind, but also maybe a slightly corrected thing. One of the stories of my life, as you’ll
probably find out, is I try to get things correct. I probably obsess about not making too many
mistakes. Okay. Now, your question, Ed, was how did I get into the computing business. When
the computers were first built in the ‘40s I was ten years old, so I certainly was not a pioneer in
that sense. I saw my first computer in 1957, which is pretty late in the history game as far as
computers are concerned. On the other hand, programming was still pretty much a new thing.
There were, I don’t know, maybe 2,000 programmers in the world at that time. I’m not sure
how to figure it, but it was still fairly early from that point of view. I was a freshman in
college. Your question was: how did I get to be a physics student there in college. I grew up in
Milwaukee, Wisconsin. Those of you who want to do the math can figure out, I was born in
1938. My father was the first person among all his ancestors who had gone to college. My
mother was the first person in all of her ancestors who had gone to a year of school to learn
how to be a typist. There was no tradition in our family of higher education at all. I think
[that’s] typical of America at the time. My great-grandfather was a blacksmith. My grandfather
was a janitor, let’s say. The people were pretty smart. They could play cards well, but they
didn’t have an academic background. I don’t want to dwell on this too much, because I find
that there’s lots of discussion on the internet about the early part of my life. There’s a book
called Mathematical People, in which people asked me these questions at length -- how I got
started. The one thing that stands out most, probably, is when I was an eighth grader there was
a contest run by a local TV station, a company called Zeigler’s Giant Bar. They said, “How
many words can you make out of the letters in ‘Zeigler’s Giant Bar’?” Well, there’s a lot of
letters there. I was kind of intrigued by this question, and I had just seen an unabridged
dictionary. So I spent two weeks going through the unabridged dictionary, finding every word
in that dictionary that could be made out of the letters in “Zeigler’s Giant Bar”. I pretended that
I had a stomachache, so I stayed home from school those two weeks. The bottom line is that I
found 4500 words that could be made, and the judges had only found 2500. I won the contest,
and I won Zeigler’s Giant Bars for everybody in my class, and also got to be on television and
everything. This was the first indication that I would obsess about problems that would take a
little bit of - - what do you call it? -- long attention span to solve. But my main interest in those
days was music. I almost became a music major when I went to college. Our high school was
not very strong in science, but I had a wonderful chemistry and physics teacher who inspired
me. When I got the chance to go to Case, looking back, it seems that the thing that really
turned it was that Case was a challenge. It was supposed to have a lot of meat. It wasn’t going
to be easy. At the college where I had been admitted to be a music major, the people, when I
visited there, sort of emphasized how easy it was going to be there. Instead of coasting, I think
I was intrigued by the idea that Case was going to make me work hard. I was scared that I was
going to flunk out, but still I was ready to work. I worked especially hard as a freshman, and
then I coasted pretty much after that. In my freshman year, I started out and I found out that
my chemistry teacher knew a lot of chemistry, but he didn’t know physics or mathematics. My
physics teacher knew physics and chemistry, but he didn’t know much about mathematics. But
my math teacher knew all three things. I was very impressed by my math teacher. Then in my
sophomore year in physics, I had to take a required class of welding. I just couldn’t do

welding, so I decided maybe I can’t be a physicist. Welding was so scary. I’ve got these
thousands of volts in this stuff that I’m carrying. I have to wear goggles. I can’t have my
glasses on, I can’t see what I’m doing, and I’m too tall. The table is way down there. I’m
supposed to be having these scary electrons shooting all over the place and still connect X to
Y. It was terrible. I was a miserable failure at welding. On the other hand, mathematics! In the
sophomore year for mathematicians, they give you courses that are what we now call discrete
mathematics, where you study logic and things that are integers instead of continuous
quantities. I was drawn to that. That was something, somehow, that had great appeal to me.
Meanwhile, in order to support myself, I had to work for the statisticians at Case. First this
meant drawing graphs and sorting cards. We had a fascinating machine where you put in
punch cards and they fall into different piles, and you can look at what comes out. Then I could
plot the numbers on a graph, and get some salary from this. Later on in my freshman year
there arrived a machine that, at first, I could only see through the glass window. They called it
a computer. I think it was actually called the IBM 650 “Univac”. That was a funny name,
because Univac was a competing brand. One night a guy showed me how it worked, and gave
me a chance to look at the manual. It was love at first sight. I could sit all night with that
machine and play with it. Actually, to be exact, the first programs I wrote for the machine were
not in machine language but in a system called The Bell Interpreter System. It was something
like this. You have an instruction, and the instruction would say, “Add the number in cell 2 to
the number in cell 15 and put the result in cell 30.” We had instructions like that, a bunch of
them. This was a simple way to learn programming. In fact, I still believe that it might be the
best way to teach people programming, instead of teaching them what we call high-level
language right now. Certainly, it’s something that you could easily teach to a fourth or fifth
grader who hasn’t had algebra yet, and get the idea of what a machine is. I was pledging a
fraternity, and one of my fraternity brothers didn’t want to do his homework assignment where
he was supposed to find the roots of a fifth-degree equation. I looked at some textbooks, and it
told me how to solve a fifth-degree equation. I programmed it in this Bell Interpretive
Language. I wrote the program. My memory is that it worked correctly the first time. I don’t
know if it really gave the right answers, but miraculously it ground out these numbers. My
fraternity brother passed his course, I got into the fraternity, and that was my first little
program. Then I learned about the machine language inside the 650. I wrote my first program
for the 650 probably in the spring of my freshman year, and debugged it at night. The first time
I wrote the program, it was about 60 instructions long in machine language. It was a program
to find the prime factors of a number. The 650 was a machine that had decimal arithmetic with
ten-digit numbers. You could dial the numbers on the console of the machine. So you would
dial a ten- digit number, and my program would go into action. It would punch out cards that
would say what are the factors of this number that you dialed in there. The computer was a
very slow computer. In order to do a division instruction, it took five milliseconds. I don’t
know, is that six orders of magnitude slower than today’s machines, to do division? Of course,
the way I did factoring was by division. To see if a number was divisible by 13, I had to divide
by 13. I divided by 15 as well, 17, 19. It would try to find everything that divided. If I started
out with a big ten-digit number that happened to be prime -- had no dividers at all -- I think it

would take 15 or 20 minutes for my program to decide. Not only did my program have about
60 or so instructions when I started, they were almost all wrong. When I finished, it was about
120, 130 instructions. I made more errors in this program than there were lines of code! One of
the things that I had to change, for example, that took a lot of work, was I had originally
thought I could get all the prime factors onto one card. But a card had 80 columns, and each
number took ten digits. So I could only get eight factors on a single card. Well, you take a
number like 2 to the 32nd power, that’s going to take four cards. Because it’s two times two
times two times two [and so on]. I had to put in lots of extra stuff in my program that would
handle these cases. So my first program taught me a lot about the errors that I was going to be
making in the future, and also about how to find errors. That’s sort of the story of my life, is
making errors and trying to recover from them. Did I answer your question yet?

EF: No.

DK: No.

EF: Don, a couple questions about your early career, before Case and at Case. It’s very interesting
that you mentioned the Zeigler’s Giant Bar, because it points to a really early interest in
combinatorics. Your intuition at combinatorics is one of the things that impresses so many of
us. Why combinatorics, and how did you get to that? Do you see combinatorics in your head in
a different way than the rest of us do?

DK: I think that there is something strange about my head. It’s clear that I have much better
intuition about discrete things than continuous things. In physics, for example, I could pass the
exams and I could do the problems in quantum mechanics, but I couldn’t intuit what I was
doing. I didn’t feel right being able to get an “A” on an exam without ever having the idea of
how I would’ve thought of the questions that the person made up solving the exam. But on the
other hand, in my discrete math class, these were things that really seemed part of me. There’s
definitely something in how I had developed by the time I was a teenager that made me
understand discrete objects, like zeros and ones of course, or things that are made out of
alphabetical letters, much better than things like Fourier transforms or waves -- radio waves,
things like this. I can do these other things, but it’s like a dog standing on his hind legs. “Oh,
look, the dog can walk.” But no, he’s not walking; he’s just a dog trying to walk. That’s the
way it is for me in a lot of the continuous or more geometrical things. But when it comes to
marks on papers, or integer numbers like finding the prime factors of something, that’s a
question that appealed to me more than even finding the roots of polynomial.

EF: Don, question about that. Sorry to interject this question, behaving like a cognitive
psychologist.

DK: This is what you’re paid to do, right?

EF: Right. Herb Simon -- Professor Simon, of Carnegie Mellon University -- once did a set of
experiments that kind of separated thinkers into what he called “visualizers” and
“symbolizers”. When you do the combinatorics and discrete math that you do, which so

amazes us guys who can’t do it that well, are you actually visualizing what’s going on, or is it
just pure symbol manipulation?

DK: Well, you know, I’m visualizing the symbols. To me, the symbols are reality, in a way. I take
a mathematical problem, I translate it into formulas, and then the formulas are the reality. I
know how to transform one formula into another. That should be the subtitle of my book
Concrete Mathematics: How to Manipulate Formulas. I’d like to talk about that a little. It
started out… My cousin, Earl, who died, Earl Goldschlager [ph?], he was a engineer,
eventually went to Southern California, but I knew him in Cleveland area. When I was in
second grade he went to Case. He was one of the people who sort of influenced me that it may
be good to go to Case. When I was visiting him in the summer, he told me a little bit about
algebra. He said, “If you have two numbers, and you know that the sum of these numbers is
100 and the difference of these numbers is 20, what are the two numbers?” He said, “You
know how you can solve this, Don? You can say X is one of the numbers and Y is one of the
numbers. X plus Y is 100. X minus Y is 20. And how do you find those numbers?” he says.
“Well, you add these two equations together, and you get 2X = 120. And you subtract the
equation from each other, and you get 2Y = 80. So X must be 60, and Y must be 40. Okay?”
Wow! This was an “aha!” thing for me when I was in second grade. I liked symbols in this
form. The main thing that I enjoyed doing, in seventh grade, was diagramming sentences.
NPR had a show; a woman published a book about diagramming sentences, “The Lost Art of
Diagramming Sentences”, during the last year. This is where you take a sentence of English
and you find its structure. It says, “It’s a noun phrase followed by a verb phrase.” Let’s take a
sentence here, “How did you get to be a physics student?” Okay. It’s not a noun phrase
followed by a verb phrase; this is an imperative sentence. It starts with a verb. “How did you
get…” It’s very interesting, the structure of that sentence. We had a textbook that showed how
to diagram simple English sentences. The kids in our class, we would then try to apply this to
sentences that weren’t in the book, sentences that we would see in newspapers or in
advertisements. We looked at the hymns in the hymnal, and we couldn’t figure out how to
diagram those. We spent hours and hours trying to figure this out. But we thought about
structure of language, and trying to make these discrete tree structures out of English
sentences, in seventh grade. My friends and I, this turned us on. When we got to high school,
we breezed through all our English classes because we knew more than the teachers did. They
had never studied this diagramming. So I had this kind of interest in symbols and diagramming
early on -- discrete things, early on. When I got into logic as a sophomore, and saw that
mathematics involved a lot of symbol manipulation, then that took me there. I see punched
cards in this. I mean, holes in cards are nice and discrete. The way a computer works is totally
discrete. A computer has to stand on its hind legs trying to do continuous mathematics. I have
a feeling that a lot of the brightest students don’t go into mathematics because -- curious thing
-- they don’t need algebra at the level I did. I don’t think I was smarter than the other people in
my class, but I learned algebra first. A lot of very bright students today don’t see any need for
algebra. They see a problem, say, the sum of two numbers is 100 and the difference is 20, they
just sort of say, “Oh, 60 and 40.” They’re so smart they don’t need algebra. They go on seeing
lots of problems and they can just do them, without knowing how they do it, particularly. Then

finally they get to a harder problem, where the only way to solve it is with algebra. But by that
time, they haven’t learned the fundamental ideas of algebra. The fact that they were so smart
prevented them from learning this important crutch that I think turned out to be important for
the way I approach a problem. Then they say, “Oh, I can’t do math.” They do very well as
biologists, doctors and lawyers.

EF: You’re recounting your interest in the structure of languages very early. Seventh grade, I think
you said. That’s really interesting. Because among the people -- well, the word “computer
science” wasn’t used, but we would now call it “information technology” people -- your early
reputation was in programming languages and compilers. Were the seeds of that planted at
Case? Tell us about that early work. I mean, that’s how I got to know you first.

DK: Yeah, the seeds were planted at Case in the following way. First I learned about the 650.
Then, I’m not sure when it was but it probably was in the summer of my freshman year, where
we got a program from Carnegie -- where you were a student -- that was written by Alan Perlis
and three other people.

EF: “IT”.

DK: The IT program, “IT”, standing for Internal Translator.

EF: Yeah, it was Perlis, [Harold] van Zoeren, and Joe Smith.

DK: In this program you would punch on cards a algebraic formula. You would say, “A = B + C.”
Well, in IT, you had to say, “X1 = X2 + X4.” Because you didn’t have a plus sign, you had to
say, “A” for the plus sign. So you had to say, “X1 Z X2 A X4.” No, “S,” I guess, was plus,
and “A” was for absolute value. But anyway, we had to encode algebra in terms of a small
character set, a few letters. There weren’t that many characters you could punch on a card. You
punch this thing on a card, and you feed the card into the machine. The lights spin around for a
few seconds and then -- punch, punch, punch, punch -- out come machine language
instructions that set X1 equal to X2 + X4. Automatic programming coming out of an algebraic
formula. Well, this blew my mind. I couldn’t understand how this was possible, to do this
miracle where I had just these punches on the card. I could understand how to write a program
to factor numbers, but I couldn’t understand how to write a program that would convert
algebra into machine instructions.

EF: It hadn’t yet occurred to you that the computer was a general symbol-manipulating device.

DK: No. No, that occurred to Lady Lovelace, but it didn’t occur to me. I’m slow to pick up on
these things, but then I persevere. So I got hold of the source code for IT. It couldn’t be too
long, because the

650 had only 2,000 words of memory, and some of those words of memory had to be used to hold
the data as well as the instructions. It’s probably, I don’t know, 1,000 lines of code. The source
code is not hard to find. They published it in a report and I’ve seen it in several libraries. I’m

pretty sure it’s on the internet long ago. I went through every line of that program. During the
summer we have a family get- together on a beach on Lake Erie. I would spend the time playing
cards and playing tennis. But most of the time I was going through this listing, trying to find out
the miracle of how IT worked. Ok, it wasn’t impossible after all. In fact, I thought of better ways
to do it than were in that program. Since we’re in a history museum, we should also mention that
the program had originally been developed when Perlis was at Purdue, before he went to
Carnegie, with three other people there. I think maybe Smith and van Zoeren came with Alan to
Carnegie. But there was Sylvia Orgel and several other people at Purdue who had worked on a
similar project, for a different computer at Purdue. Purdue also produced another compiler, a
different one. It’s not as well-known as IT. But anyway, I didn’t know this at the time, either.

The code, once I saw how it happened, was inspiring to me. Also, the discipline of reading other
people’s program was something good to learn early. Through my life I’ve had a love of reading
source materials -

- reading something that pioneers had written and trying to understand what their thought processes
were in order to write this out. Especially when they’re solving a problem I don’t know how to
solve, because this is the best way for me to put into my own brain how to get past stumbling
blocks. At Case I also remember looking at papers that Fermat had written in Latin in the 17th
century, in order to understand

how that great number theorist approached problems. I have to rely on friends to help me get
through Sanskrit manuscripts and things now, but I still…. Just last month, I found, to my great
surprise, that the concept of orthogonal Latin squares, which we’ll probably talk about briefly
later on, originated in North Africa in the 13th century. Or was it the 14th century? I was
looking at some historical documents and I

came across accounts of this Arabic thing. By reading it in French translation I was able to see that
the guy really had this concept, orthogonal Latin squares, that early. The previous earliest
known example was 1724. I love to look at the work of pioneers and try to get into their minds
and see what’s happening.

EF: One of the things worth observing -- it’s off the track but as long as we’re talking about history
-- is that our current generation, and generations of students, don’t even know the history of
their own field. They’re constantly reinventing things, or thoughtlessly disregarding things.
We’re not just talking about history going back in time hundreds of years. We’re talking about
history going back a dozen years, or two-dozen years.

DK: Yeah, I know. It’s such a common failing. I would say that’s my major disappointment with
my teaching career. I was not able to get this across to any of my students this love for that
kind of scholarship, reading source material. I was a complete failure at passing this on to the
people that I worked with the most closely. I don’t know what I should’ve done. When I came
to Stanford from Caltech, I had been researching Pascal. I couldn’t find much about Pascal’s
work in the Caltech library. At Stanford, I found two shelves devoted to it. I was really
impressed by that. Then I came to the Stanford engineering library, and everything was in
storage if it was more than five years old. It was a basket case at that time, in the 60’s.

DK: I’ve got to restrain myself from not telling too much about the early compiler. But anyway,

after IT, I have to mention that I had a job by this time at the Case Computing Center. I wasn’t
just growing grass for statisticians anymore. Case was one of the very few institutions in the
country with a really

enlightened attitude that undergraduate students were allowed to touch the computers by
themselves, and also write software for the whole campus. Dartmouth was another place.
There was a guy named Fred Way who set the policy at Case, and instead of going the way
most places go, which would hire professionals to run their computer center, Case hired its
own students to play with the machines and to do the stuff everybody was doing. There were
about a dozen of us there, and we turned out to be fairly good contributors to the computing
industry in the long range of things. I told all of my friends how this IT compiler worked, and
we got together and made our own greatly improved version the following year. It was called
RUNCIBLE. Every program in those days had to have an acronym and this was the Revised
Unified New Compiler Basic Language Extended, or something like this. We found a reason
for the name. But we added a million bells and whistles to IT, basically.

EF: All on the 2000 word drum.

DK: All on the 2000 word drum. Not only that, but we had four versions of our compiler. One of
them would compile to assembly language. One would compile directly into machine language.
One version would use floating point hardware. And one version would use floating point
attachment. If you changed

613 instructions, you would go from the floating point attachment to the floating point hardware
version. If you changed another 372 instructions, it would change from the assembly language
version to the machine language version. If we could figure out a way to save a line of code in
the 373 instructions in one version, then we had to figure out a way to correspondingly save
another line of code in the other version. Then we could have another instruction available to put
in a new feature. So RUNCIBLE went through the stages of software development that have
since become familiar, where there is what they

call “creeping featurism”, where every user you see wants a new thing to be added to the software.
Then you put that in and pretty soon the thing gets… you have a harder and harder user manual.
That is the way software always has been. We got our experience of this. It was a group of us
developing this; about, I don’t know, eight of us worked together on different parts of it. But my
friend, Bill Lynch, and I

did most of the parts that were the compiler itself. Other people were working on the subroutines
that would support the library, and things like that. Since I mentioned Bill Lynch, I should also,
I guess... I wrote a paper about the way RUNCIBLE worked inside, and it was published in the
Communications of the ACM during my senior year, because we had seen other articles in this
journal that described methods that were not as good as the ones that were in our compiler. So
we thought, okay, let’s put it to work. But I had no idea what scientific publishing was all about.
I had only experienced magazines before, and magazines don’t give credit for things, they just
tell the news. So I wrote this article and it

explained how we did it in our compiler. But I didn’t mention Bill Lynch’s name or anything in the

article. I found out to my great surprise afterwards that I was getting credit for having invented
these things, when actually it was a complete team effort. Mostly other people, in fact. I had just
caught a few bugs and done a lot of things, but nothing really very original. I had to learn about
scholarship, about scientific publishing and things as part of this story. So we got this experience
with users, and I also wrote the user manual for this machine. I am an undergraduate. Case
allows me to write the user manual for RUNCIBLE, and it is used as a textbook in classes. Here
I’ve got a class that I am taking; I can take a class and I wrote the textbook for it already as an
undergraduate. This meant that I had an unusual visibility on campus, I guess. The truth is that
Case was a really great college for undergraduates, and it had superb teachers. But it did not have
very strong standards for graduate studies. It was very difficult

to get admitted to the undergraduate program at Case, and a lot of people would flunk out. But
in graduate school it wasn’t so hard to get over. I noticed this, and I started taking
graduate courses, because there was no competition. This impressed my teachers -- “Oh,
Knuth is taking graduate

courses” -- not realizing that this was line of least resistance so that I could do other things like
write compilers as a student. I edited a magazine and things like that, and played in the band,
and did lots of activity. Now [to] the story, however: What about compilers? Well, I got a job
at the end of my senior year to write a compiler for Burroughs, who wanted to sell their drum
machine to people who had IBM

650s. Burroughs had this computer called the 205, which was a drum machine that had 4000 words
of memory instead of 2000, and they needed a compiler for it. ALGOL was a new language at
the time. Somebody heard that I knew something about how to write compilers, and Thompson
Ramo Wooldridge [later TRW Inc.] had a consulting branch in Cleveland. They approached me
early in my senior year and said, “Don, we want to make a proposal to Burroughs Corporation
that we will write them an ALGOL compiler. Would you write it for us if we got the contract?”
I believe what happened is that they made a proposal to Burroughs that for $75,000 they would
write a ALGOL compiler, and they would pay me $5,000 for it, something like this. Burroughs
turned it down. But meanwhile I had learned about the 205 machine language, and it was kind
of appealing to me. So I made my own proposal to Burroughs. I said I’ll write you an ALGOL
compiler for $5,000, but I can’t implement all of ALGOL. I think I told them I can’t implement
all of ALGOL for this; I am just one guy. Let’s leave out procedures -- subroutines. Well, this
is a big hole in the language! Burroughs said, “No, no -- you got to put in procedures.” I said,
“Okay, I will put in procedures, but you got to pay me $5,500.” That’s what happened. They
paid me $5,500, which was a fairly good salary in those days. I think a college professor was
making eight or nine thousand dollars a year in those days. So between graduating from Case
and going to Cal Tech, I worked on this compiler. As I drove out to California, I drove a 100
miles a day and I sat in a motel and wrote code. The coding form on which I wrote this code, I
now donated it to the Computer History Museum, and you can see exactly the code that I wrote.
I debugged it, and it was Christmas time [when] I had the compiler ready for Burroughs to use.
So I was interested; I had two compilers that I knew all the code by the end of the ‘60s. Then I
learned about other projects. When I was in graduate school some people came to me and said,

“Don, how about writing software full time? Quit graduate school. Just name your price. Write
compilers for a living, and you will have a pretty good living.” That was my

second year of graduate school.

EF: In what department at Cal Tech?

DK: I was at Cal Tech in the math department. There was no such thing as a computer science
department anywhere.

EF: Right. But you didn’t do physics.

DK: I didn‘t do physics. I switched into math after my sophomore year at Case, after flunking
welding. I switched into math. There were only seven of us math majors at Case. I went to Cal
Tech, and that’s another story we’ll get into soon. I’m in my second year at Cal Tech, and I was
a consultant to Burroughs. After finishing my compiler for Burroughs, I joined the Product
Planning Department. The Product Planning Department was largely composed of people who
had written the best software ever done in the world up to that time, which was a Burroughs
ALGOL compiler for the 220 computer. That was a great leap forward for software. It was the
first software that used list processing and high level data structures in an intelligent way. They
took the ideas of Newell and Simon and applied them to compilers. It ran circles around all the
other things that we were doing. I wanted to get to know these people, and they were by this
time in the Product Planning Group, because Burroughs was doing its very

innovative machines that are the opposite of RISC. They tried to make the machine language look
like algebraic language. This group I joined at Burroughs as a consultant. So I had a
programming hat when I was outside of Cal Tech, and at Cal Tech I am a mathematician taking
my grad studies. A startup company, called Green Tree Corporation because green is the color of
money, came to me and said, “Don, name your price. Write compilers for us and we will take
care of finding computers for you to

debug them on, and assistance for you to do your work. Name your price.” I said, “Oh, okay.
$100,000.”, assuming that this was… In that era this was not quite at Bill Gate’s level today, but it

was sort of out there. The guy didn’t blink. He said, “Okay.” I didn’t really blink either. I said,
“Well, I’m not going to do it. I just thought this was an impossible number.” At that point I
made the decision in my life that I wasn’t going to optimize my income; I was really going to
do what I thought I could do for… well, I don’t know. If you ask me what makes me most
happy, number one would be somebody saying “I learned something from you”. Number two
would be somebody saying “I used your software”. But number infinity would be… Well, no.
Number infinity minus one would be “I bought your book”. It’s not as good as “I read your
book”, you know. Then there is “I bought your software”; that was not in my own personal
value. So that decision came up. I kept up with the literature about compilers. The
Communications of the ACM was where the action was. I also worked with people on trying
to debug the ALGOL language, which had problems with it. I published a few papers, like
”The Remaining Trouble Spots in ALGOL 60” was one of the papers that I worked on. I
chaired a committee called “Smallgol” which was to find a subset of ALGOL that would work

on small computers. I was active in programming languages.

EF: Was McCarthy on Smallgol? DK: No.

No, I don’t think he was. EF: Or Klaus

Wirth?

DK: No. There was a big European group, but this was mostly Americans. Gosh, I can’t
remember. We had about 20 people as co-authors of the paper. It was Smallgol 61? I don’t
know. It was so long ago I can’t remember. But all the authors are there.

EF: You were still a graduate student.

DK: I was a graduate student, yeah. But this was my computing life.

EF: What did your thesis advisors think of all this?

DK: Oh, at Case they thought it was terrible that I even touched computers. The math professor
said, “Don’t dirty your hands with that.”

EF: You mean Cal Tech.

DK: No, first at Case. Cal Tech was one of the few graduate schools that did not have that opinion,
that I shouldn’t touch computers. I went to Cal Tech because they had this [strength] in
combinatorics. Their computing system was incredibly arcane, and it was terrible. I couldn’t run
any programs at Cal Tech. I mean, I would have to use punched paper tape. They didn’t even
have punch cards, and their computing system was horrible unless you went to JPL, Jet
Propulsion Laboratory, which was quite a bit off campus. There you would have to submit a job
and then come back a day later. You couldn’t touch the machines or anything. It was just
hopeless. At Burroughs I could go into what they called the fishbowl, which was the
demonstration computer room, and I could run hands-on every night, and get work done. There
was a program that I had debugged one night at Burroughs that was solving a problem that
Marshall Hall, my thesis advisor, was interested in. It took more memory than the Burroughs
machine had, so I had to run it at JPL. Well, eight months later I had gotten the output from JPL
and I had also accumulated the listings that were 10 feet high in my office, because it’s a one- or
two-day turnaround time and then they give you a memory dump at the end of the run. Then you
can say, “Oh, I’ll change this and I’ll try another thing tomorrow.” It was incredibly inefficient,
brain damaged computing at Cal Tech in the early ‘60s. But I kept track with the programming
languages community and I became editor of the programming languages section of the
Communications of the ACM and the Journal of the ACM in, I don’t know, ’64, ’65, something
like that. I was not a graduate student, but I was just out of graduate school in the ‘60s. That was

definitely the part of computing that I did by far the most in, in
those days. Computing was divided into three categories. By the time I came to Stanford, you were

either a numerical analyst, or artificial intelligence, or programming language person. We had
three qualifying exams and there was a tripartite division of the field.

EF: Don, just before we leave your thesis advisor: your thesis itself was in mathematics, not in
computing, right?

DK: Yes.

EF: Tell us a little bit about that and what your thesis advisor’s influence on your work was at the
time.

DK: Yeah, because this is combinatorial, and it’s definitely an important part of the story.
Combinatorics was not a academic subject at Case. Cal Tech was one of the few places that had
it as a graduate course, and there were textbooks that began to be written. I believe at Stanford,
for example, George Danzig introduced the first class in combinatorics probably about 1970. It
was something that was low on the totem pole in the mathematics world in those days. The high
on the totem pole was the Bourbaki school from France, of highly abstract mathematics that was
involved with higher orders of infinities and things. I had colleagues at Cal Tech that I would
say, “You and I intersect at countable infinity, because I never think of anything that is more
than countable infinity, and you never think of anything that is less than countable infinity.” I
mostly stuck to things that were finite in my own work. At Case, when I’m a senior, we had a
visiting professor, R. C. Bose from North Carolina, who was a very inspiring lecturer. He was
an extremely charismatic guy, and he had just solved a problem that became front page news in
the New York Times. It was to find orthogonal Latin squares. Now, today there is a craze called
Sudoku, but I imagine by the time people are watching this tape or listening to this tape that
craze will have faded away. An N-by-N Latin square is an arrangement of N letters so ever row
and every column has all N of the letters. An orthogonal Latin square is where you have two
Latin squares

with the property that if you put them next to each other, so you have a symbol from the first and a
symbol from the second, the N squared cells you get have all N squared possibilities. All
combinations of A will occur with A somewhere. A will occur with B somewhere. Z will occur
with Z somewhere. A famous paper, from 1783, I think, by Leonard Euler had conjectured that it
was impossible to find orthogonal Latin squares that were 10 by 10, or 14 by 14, or 18 by 18, or
6 by 6 -- all the cases that were twice an odd number. This conjecture was believed for 170 years,
and even had been proved three times, but people found holes in the proof. In 1959 R. C. Bose
and two other people found that it was wrong, and they constructed Latin squares that were 10 by
10 and 14 by 14. They showed that all those cases where actually it was possible to find
orthogonal Latin squares. I met Bose. I was taking a class from him. It was a graduate class, and I
was taking graduate classes. He asked me if I could find some 12 by 12 orthogonal Latin
squares. It sounded like an interesting program, so I wrote it up and I presented him

with the answer the next morning. He was happy and impressed, and we found five mutually

orthogonal Latin squares of the order of 12. That became a paper. Some interesting stories about
that, that I won’t go into it. The main thing is that he was on the cutting edge on this research. I
was at an undergraduate place where we had great teaching, but we did not have cutting edge
researchers. He could recommend me to graduate school, and he could also tell me Marshall Hall
is very good at combinatorics. He gives me a good plug for going to Cal Tech. I had visited
California with my parents on summer vacations, and so when I applied to graduate school I
applied to Stanford, Berkeley and Cal Tech, and no other places. When I got admitted to Cal
Tech, I got admitted to all three. I took Cal Tech because I knew that they had a good
combinatorial attitude there, which was not really true at Stanford. In fact, [at] Stanford I
wouldn’t have been able to study Latin squares at all. While we’re at it, I might as well mention
that I got fellowships. I got a National Science Foundation Fellowship, Woodrow Wilson
Foundation Fellowship, to come to these place, but they all had the requirement that you could
not do anything except study as a graduate student. I couldn’t be a consultant to Burroughs and
also have an NSF fellowship. So I turned down the fellowships. Marshall Hall was then my thesis
advisor. He was a world class mathematician, and had done, for a long time, pioneering work in
combinatorics. He was my mentor. But it was a funny thing, because I was such in awe of him
that when I was in the same room with him I could not think straight. I wouldn’t remember my
name. I would write down what he was saying, and then I would go back to my office so that I
could figure it out. We couldn’t do joint research together in the same room.

We could do it back and forth. It was almost like farming my programs out to JPL to be run. But
we did collaborate on a few things. The one thing that we did the most on actually never got
published, however, because it turned out that it just didn’t lead to the solution. He thought he
had a way to solve

the Burnside problem in group theory, but it didn’t pan out. After we did all the computation I
learned a lot in the process, but none of these programs have ever appeared in print or anything.
It taught me how to deal with tree structures inside a machine, and I used the techniques in other
things over the years. He also was an extremely good advisor, in better ways than I was with my
students. He would seem to keep track of me to make sure I was not slipping. When I was
working with my own graduate students, I was pretty much in a mode where they would bug me
instead of me bugging them. But he would actually

write me notes and say, Don, why don’t you do such and such? Now, I chose a thesis topic which
was to find a certain kind of what they call block designs. I will just say: symmetric block
designs with parameter Lambda equals 2. Anybody could look that up and find out what that
means. I don’t want to explain it now. At the time I did this, I believe there were six known
designs of this form altogether. I had found a new way to look at those designs, and so I thought
maybe I’ll be able to find infinitely many more such designs. They would be mostly academic
interest, although statisticians would justify that they could use them somehow. But mostly, just,
do they exist or not? This was the question. Purely intellectual curiosity. That was going to be
my thesis topic: to see if I could find lots of these elusive combinatorial patterns. But one
morning I was looking at another problem entirely, having to do with finite projective geometry,
and I got a listing from a guy at Princeton who had just computed 32 solutions to a problem

that I had been looking at with respect to a homework problem in my combinatorics class. He had
found that there are 32 solutions of Type A, and 32 solutions of Type B, to this particular
problem. I said, hmm, that’s interesting, because the 32 solutions of Type A, one of those was a
well known construction. The

32 of Type B, nobody had ever found any Type B solutions before for the next higher up case. I
remember I had just gotten this listing from Princeton, and I was riding up on the elevator with
Olga Todd, one of our professors, and I said, “Mrs. Todd, I think I’m going to have a theorem
in an hour. I’m going to look at these two lists of 32 numbers. For every one on this page I am
going to find a corresponding one on this page. I am going to psyche out the rule that explains
why there happen to be 32 of each kind.” Sure enough, an hour later I had seen how to get
from each solution on the first page to the solution on the second page. I showed this to
Marshall Hall. He said, “Don, that’s your thesis. Don’t worry on this Lambda equals 2
business. Write this up and get out of here.” So that became my thesis. And it is a good thing,
because since then only one more design with Lambda equals 2 has been discovered in the
history of the world. I might still be working on my thesis if I had stuck to that problem. I felt a
little guilty that I had solved my PhD problem in one hour, so I dressed it up with a few other
chapters of stuff. The whole thesis is 70 some pages long. I discovered that it is now on the
internet, probably for peoples’ curiosity, I suppose: what did he write about in those days? But
of all the areas of mathematics that I’ve applied to computer science, I would say the only area
that I have never applied to computer science is the one that I did my thesis in. It just was good
training for me to exercise my brain cells.

EF: Yeah. In fact for your colleagues, that is kind of a black hole in their knowledge of you and
understanding of you, is that thesis.

DK: The thesis, yeah. Well, I was going to say the reason that it is not used anymore is because
these designs turn out… Okay, we can construct them with all this pain and careful, deep
analysis. But

it turned out later on that if we just work at random, we get even better results. So it was kind of
pointless from the point of view of that application, except for certain codes and things like
that.

EF: Don, just a footnote to that story. I intended this would come up later in the interview, but it’s
just so great a point to bring it in. When I’ve been advising graduate students, I tell them that
the really hard part of the thesis is finding the right problem. That’s at least half the problem.

DK: Yeah.

EF: And then the other half is just doing it. And that’s the easy part of it. So I am not impressed by
this one hour. I mean, the hard part went into finding the problem, not in the solving of it. We
will get to, of course, the great piece of work that you did on The Art of Computer
Programming. But it’s always seemed to me that the researching and then writing the text of
The Art of Computer Programming was a problem generator for you. The way you and I have
expressed it in the past is that you were weaving a fabric and you would encounter holes in the

fabric. Those would be the great problems to solve, and that’s more than half the work. Once
you find the problems you can go get at them. Do you want to comment on that?

DK: Right. Well, yeah. We will probably comment on it more later, too. But I guess one of the
blessings and curses of the way I work is that I don’t have difficulty thinking of questions. I
don’t have too much difficulty in the problem generation phase -- what to work on. I have to
actively suppress

stimulation so that I’m not working on too many things at once. But you can ask questions that are…
The hard thing, for me anyway, is not to find a problem, but to find a good problem. To find a
problem that has some juice to it. Something that will not just be isolated to something that
happens to be true, but also will be something that will have spin offs. That once you’ve solved
the problem, the techniques are going to apply to many other things, or that this will be a link in
a chain to other things. It’s not just having a question that needs an answer. It’s very easy to…
There’s a professor; I might as well mention his name, although I don’t like to. It would be hard
to mention the concept without somebody thinking of his name. His name is [Florentin]
Smarandache. I’ve never met him, but he generates problems by the zillions. I’ve never seen one
of them that I thought any merit in it whatsoever. I mean, you can generate sequences of
numbers in various ways. You can cube them and remove the middle digit, or something like
this. And say, ”Oh, is this prime?”, something like that. There’s all kinds of ways of defining
sequences of numbers or patterns of things and then asking a question about it. But if one of my
students say “I want to work on this for a thesis”, I would have to say “this problem stinks”. So
the hard

thing is not to come up with a problem, but to come up with a fruitful problem. Like the famous
problem of

Fermat’s Last Theorem: can there be A to the N, plus B to the N equals C to the N, for N greater than
2.

It has no applications. So you found A, B and C. It doesn’t really matter to anything. But in the
course of working on this problem, people discovered beautiful things about mathematical
structures that have solved uncountably many practical applications as a spin off. So that’s one.
My thesis problem that I solved was probably not in that sense, though, extremely interesting
either. It answered a question whether there existed projective geometries of certain orders that
weren’t symmetrical. All the cases that people had ever thought of were symmetrical, and I
thought of unsymmetrical ways to do it. Well, so what? But the technique that I used for it led
to some insight and got around some other blocks that people had in other theory. I have to
worry about not getting bogged down in every question that I think of, because otherwise I
can’t move on and get anything out the door.

EF: Don, we've gotten a little mixed up between the finishing of your thesis and your assistant
professorship at Caltech, but it doesn't matter. Around this time there was the embryonic
beginnings of a multi-volume work which you're known for, "The Art of Computer
Programming." Could you tell us the story about the beginning? Because soon it's going to be
the middle of it, you were working on it so fast.

DK: This is, of course, really the story of my life, because I hope to live long enough to finish it.
But I may not, because it's turned out to be such a huge project. I got married in the summer of
1961, after my first year of graduate school. My wife finished college, and I could use the
money I had made -- the

$5000 on the compiler -- to finance a trip to Europe for our honeymoon. We had four months of
wedded bliss in Southern California, and then a man from Addison-Wesley came to visit me and
said "Don, we would like you to write a book about how to write compilers." The more I thought
about it, I decided “Oh yes, I've got this book inside of me.” I sketched out that day -- I still have
the sheet of tablet paper on which I wrote -- I sketched out 12 chapters that I thought ought to be
in such a book. I told Jill, my wife, "I think I'm going to write a book." As I say, we had four
months of bliss, because the rest of our marriage has all been devoted to this book. Well, we still
have had happiness. But really, I wake up every morning and I still haven't finished the book. So
I try to -- I have to -- organize the rest of my life around this, as one main unifying theme. The
book was supposed to be about how to write a compiler. They had heard about me from one of
their editorial advisors, that I knew something about how to do this. The idea

appealed to me for two main reasons. One is that I did enjoy writing. In high school I had been editor
of the weekly paper. In college I was editor of the science magazine, and I worked on the campus
paper as copy editor. And, as I told you, I wrote the manual for that compiler that we wrote. I
enjoyed writing, number one. Also, Addison-Wesley was the people who were asking me to do
this book; my favorite textbooks had been published by Addison Wesley. They had done the
books that I loved the most as a student. For them to come to me and say, ”Would you write a
book for us?", and here I am just a second- year gradate student -- this was a thrill. Another very
important reason at the time was that I knew that there was a great need for a book about
compilers, because there were a lot of people who even in 1962

-- this was January of 1962 -- were starting to rediscover the wheel. The knowledge was out there,
but it hadn't been explained. The people who had discovered it, though, were scattered all over
the world and they didn't know of each other's work either, very much. I had been following it.
Everybody I could think of who could write a book about compilers, as far as I could see, they
would only give a piece of the

fabric. They would slant it to their own view of it. There might be four people who could write about
it, but they would write four different books. I could present all four of their viewpoints in what I
would think was

a balanced way, without any axe to grind, without slanting it towards something that I thought would
be misleading to the compiler writer for the future. I considered myself as a journalist,
essentially. I could be the expositor, the tech writer, that could do the job that was needed in
order to take the work of these brilliant people and make it accessible to the world. That was my
motivation. Now, I didn’t have much time to spend on it then, I just had this page of paper with
12 chapter headings on it. That's all I could do while I'm a consultant at Burroughs and doing my
graduate work. I signed a contract, but they said "We know it'll take you a while." I didn't really
begin to have much time to work on it until 1963, my third year

of graduate school, as I'm already finishing up on my thesis. In the summer of '62, I guess I should

mention, I wrote another compiler. This was for Univac; it was a FORTRAN compiler. I spent
the summer, I sold my soul to the devil, I guess you say, for three months in the summer of
1962 to write a FORTRAN compiler. I believe that the salary for that was $15,000, which was
much more than an assistant professor. I think assistant professors were getting eight or nine
thousand in those days.

EF: Well, when I started in 1960 at [University of California] Berkeley, I was getting $7,600 for
the nine-month year.

DK: Yeah, so you see it. I got $15,000 for a summer job in 1962 writing a FORTRAN compiler.
One day during that summer I was writing the part of the compiler that looks up identifiers in a
hash table. The method that we used is called linear probing. Basically you take the variable
name that you want to look up, you scramble it, like you square it or something like this, and
that gives you a number between one and, well in those days it would have been between 1 and
1000, and then you look there. If you find it, good; if you don't find it, go to the next place and
keep on going until you either get to an empty place, or you find the number you're looking
for. It's called linear probing. There was a rumor that one of Professor Feller's students at
Princeton had tried to figure out how fast linear probing works and was unable to succeed.
This was a new thing for me. It was a case where I was doing programming, but I also had a
mathematical problem that would go into my other [job]. My winter job was being a math
student, my summer job was writing compilers. There was no mix. These worlds did not
intersect at all in my life at that point. So I spent one day during the summer while writing the
compiler looking at the mathematics of how fast does linear probing work. I got lucky, and I
solved the problem. I figured out some math, and I kept two or three sheets of paper with me
and I typed it up. [“Notes on ‘Open’ Addressing’, 7/22/63] I guess that's on the internet now,
because this became really the genesis of my main research work, which developed not to be
working on compilers, but to be working on what they call analysis of algorithms, which is,
have a computer method and find out how good is it quantitatively. I can say, if I got so many
things to look up in the table, how long is linear probing going to take. It dawned on me that
this was just one of many algorithms that would be important, and each one would lead to a
fascinating mathematical problem. This was easily a good lifetime source of rich problems to
work on. Here I am then, in the middle of 1962, writing this FORTRAN compiler, and I had
one day to do the research and mathematics that changed my life for my future research trends.
But now I've gotten off the topic of what your original question was.

EF: We were talking about sort of the.. You talked about the embryo of The Art of Computing.
The compiler book morphed into The Art of Computer Programming, which became a seven-
volume plan.

DK: Exactly. Anyway, I'm working on a compiler and I'm thinking about this. But now I'm
starting, after I finish this summer job, then I began to do things that were going to be relating
to the book. One of the things I knew I had to have in the book was an artificial machine,
because I'm writing a compiler book but machines are changing faster than I can write books.
I have to have a machine that I'm totally in control of. I invented this machine called MIX,

which was typical of the computers of 1962. In 1963 I wrote a simulator for MIX so that I
could write sample programs for it, and I taught a class at Caltech on how to write programs in
assembly language for this hypothetical computer. Then I started writing the parts that dealt
with sorting problems and searching problems, like the linear probing idea. I began to write
those parts, which are part of a compiler, of the book. I had several hundred pages of notes
gathering for those chapters for The Art of Computer Programming. Before I graduated, I've
already done quite a bit of writing on The Art of Computer Programming. I met George
Forsythe about this time. George was the man who inspired both of us [Knuth and
Feigenbaum] to come to Stanford during the '60s. George came down to Southern California
for a talk, and he said, "Come up to Stanford. How about joining our faculty?" I said "Oh no, I
can't do that. I just got married, and I've got to finish this book first." I said, "I think I'll finish
the book next year, and then I can come up [and] start thinking about the rest of my life, but I
want to get my book done before my son is born.” Well, John is now 40-some years old and
I'm not done with the book. Part of my lack of expertise is any good estimation procedure as to
how long projects are going to take. I way underestimated how much needed to be written
about in this book. Anyway, I started writing the manuscript, and I went merrily along writing
pages of things that I thought really needed to be said. Of course, it didn't take long before I
had started to discover a few things of my own that weren't in any of the existing literature. I
did have an axe to grind. The message that I was presenting was in fact not going to be
unbiased at all. It was going to be based on my own particular slant on stuff, and that original
reason for why I should write the book became impossible to sustain. But the fact that I had
worked on linear probing and solved the problem gave me a new unifying theme for the book.
I was going to base it around this idea of analyzing algorithms, and have some quantitative
ideas about how good methods were. Not just that they worked, but that they worked well: this
method worked 3 times better than this method, or 3.1 times better than this method. Also, at
this time I was learning mathematical techniques that I had never been taught in school. I
found they were out there, but they just hadn't been emphasized openly, about how to solve
problems of this kind. So my book would also present a different kind of mathematics than
was common in the curriculum at the time, that was very relevant to analysis of algorithm. I
went to the publishers, I went to Addison Wesley, and said "How about changing the title of
the book from ‘The Art of Computer Programming’ to ‘The Analysis of Algorithms’." They
said that will never sell; their focus group couldn't buy that one. I'm glad they stuck to the
original title, although I'm also glad to see that several books have now come out called “The
Analysis of Algorithms”, 20 years down the line. But in those days, The Art of Computer
Programming was very important because I'm thinking of the aesthetical: the whole question
of writing programs as something that has artistic aspects in all senses of the word. The one
idea is “art” which means artificial, and the other “art” means fine art. All these are long
stories, but I’ve got to cover it fairly quickly. I've got The Art of Computer Programming
started out, and I'm working on my 12 chapters. I finish a rough draft of all 12 chapters by, I
think it was like 1965. I've got 3,000 pages of notes, including a very good example of what
you mentioned about seeing holes in the fabric. One of the most important chapters in the book
is parsing: going from somebody's algebraic formula and figuring out the structure of the

formula. Just the way I had done in seventh grade finding the structure of English sentences, I
had to do this with mathematical sentences. Chapter ten is all about parsing of context-free
language, [which] is what we called it at the time. I covered what people had published about
context-free languages and parsing. I got to the end of the chapter and I said, well, you can
combine these ideas and these ideas, and all of a sudden you get a unifying thing which goes
all the way to the limit. These other ideas had sort of gone partway there. They would say “Oh,
if a grammar satisfies this condition, I can do it efficiently.” ”If a grammar satisfies this
condition, I can do it efficiently.” But now, all of a sudden, I saw there was a way to say I can
find the most general condition that can be done efficiently without looking ahead to the end of
the sentence. That you could make a decision on the fly, reading from left to right, about the
structure of the thing. That was just a natural outgrowth of seeing the different pieces of the
fabric that other people had put together, and writing it into a chapter for the first time. But I
felt that this general concept, well, I didn't feel that I had surrounded the concept. I knew that I
had it, and I could prove it, and I could check it, but I couldn't really intuit it all in my head. I
knew it was right, but it was too hard for me, really, to explain it well. So I didn't put in The
Art of Computer Programming. I thought it was beyond the scope of my book. Textbooks don't
have to cover everything when you get to the harder things; then you have to go to the
literature. My idea at that time [is] I'm writing this book and I'm thinking it's going to be
published very soon, so any little things I discover and put in the book I didn't bother to write a
paper and publish in the journal because I figure it'll be in my book pretty soon anyway.
Computer science is changing so fast, my book is bound to be obsolete. It takes a year for it to
go through editing, and people drawing the illustrations, and then they have to print it and bind
it and so on. I have to be a little bit ahead of the state-of-the-art if my book isn't going to be
obsolete when it comes out. So I kept most of the stuff to myself that I had, these little ideas I
had been coming up with. But when I got to this idea of left-to-right parsing, I said "Well
here's something I don't really understand very well. I'll publish this, let other people figure out
what it is, and then they can tell me what I should have said." I published that paper I believe
in 1965, at the end of finishing my draft of the chapter, which didn't get as far as that story,
LR(k). Well now, textbooks of computer science start with LR(k) and take off from there. But
I want to give you an idea of…

EF: Don, for historical reasons, tell the audience where the LR(k) paper was published so they can
go look it up.

DK: It was published in the journal called Information and Control, which has now changed its
name to Information and Computation. In those days, you can see why they called it
Information and Control. It was the journal that had had the best papers on parsing of
languages at the time. It's a long paper, and difficult. It's also reprinted in my book “Selected
Papers on Computer Languages”, with a few corrections to the original. In the original, I drew
the trees with the root at the bottom. But everybody draws trees with the root at the top now, so
the reprint has trees drawn in a more modern notation. I'm trying to give the flavor of the way
things were in 1965. My son was born in the summer of '65, and I finished this work on LR(k)
at Christmastime in '65. Then I had, I think, one more chapter to write. But early in '66 I had

all 3000 pages of the manuscript ready. I typed chapter one. My idea was, I looked at these
pages -- the pages were all hand-written -- and it looked to me like my handwriting, I would
guess, that was, I don't know how many words there were on a page. I had chapter one and I
typed it and I sent it to the publishers, and they said "Don, what have you written? This book is
going to be huge." I had actually written them a letter earlier as I'm working on sorting. I said
to the guy who signed me up, I signed a contract with him; by this time, he had been promoted.
No, I'm not sure was about this, but anyway, I wrote to him in '63 or '64 saying, "You know, as
I'm working on this book on compilers, there's a few things that deserve more complete
treatment than a compiler writer needs to know. Do you mind if I add a little bit here?" They
said "Sure, Don, go right ahead. Whatever you think is good to write about, do it." Then I send
them chapter one a few years later. By this time, I guess the guy's promoted, and he's saying
"Oh my goodness, what are we going to do? Did you realize that this book is going to be more
than 2,000 pages long?", or something like this. No, I didn't. I had read a lot of books, and I
thought I understood about things. I had my typed pages there, and I was figuring five typed
pages would go into one page of text. It just looked to me, to my eyes, if I had five typewritten
pages -- you know, the letters in a textbook are smaller. But I should have realized that the
guys at the publishing house knew something about books too. They told me "No, no, it was
one and a half pages of text makes a book [page]." I didn't believe it. So I went back to my
calculus book, which was an Addison Wesley book, and it typed it out. Sure enough, they were
absolutely right. It took one and a half pages. So I had three times longer. No wonder it had
taken me so long to get chapter one done! I'm sitting here with much, much more than I
thought I had. Meanwhile computer science hasn't been standing still, and I knew that more
still has to be written as I go. I went to Boston, and I happened to catch a glance at some notes
that my editor had written to himself for the meeting that we were going to have with his
bosses, and one of the comments on there was "Terrific cost bind" or something like that.
Publishing houses all have their horror stories about a professor who writes12 volumes about
the history of an egg, or something like this, and it never sells, and it just is a terrible thing that
they have a contract that they've signed. So they have to figure out how to rescue something
out of this situation coming with this monster book. We thought at first we would package it
into three volumes instead of one. Then they sent out chapter one to a dozen readers in a focus
group, and they got comments on it. Well, the readers liked what they saw in that chapter, and
so at least I had some support from them. Then after a few more months we decided to
package it. They figured out that of the 12 chapters there were seven of them that would sell,
and we could stick the other five in some way that would make a fairly decent seven-volume
set. That was what was finally announced in 1966 or something: that it would come out in
seven volumes. After typing chapter one I typed chapter two, and so on. I kept working on it.
All the time when I'm not teaching my classes at Caltech, I'm typing up my notes and polishing
the hand-written notes that I had made from these 3000 pages of rough draft. That sets the
scene for the early days of The Art of Computer Programming.

EF: What year are we at now?

DK: What happened is, I'm at Caltech. I'm a math professor. I'm teaching classes in algebra and

once in a while combinatorics at Caltech. Also one or two classes connected with computing,
like sorting, I think I might have taught one quarter. But most of the things I'm teaching at
Caltech are orthogonal to The Art of Computer Programming. My daughter is born in
December of '66. I've got the entire manuscript of volume one to the publisher, I think, during
'66. I'm working on typing up chapters three and four at the beginning of '67. I think this is
approximately the way things stand. I was trying to finish the book before my son was born in
'65, and what happened is that I got… I'm seeing now that…Volume one actually turned out to
be almost 700 pages, which means 1,000 type-written pages. You can see why I said that my
blissful marriage wasn't quite so blissful, because I'm working on this a lot. I'm doing most of
it actually watching the late late show on television. I have also some earplugs for when the
kids are screaming a little bit too much. Here I am, typing The Art of Computer Programming
when the babies are crying, although I did also change diapers and so on.

EF: I think that what we need to do is talk about… This is December '66, when your daughter was
born.

DK: Yeah.

EF: That leads sort of directly into this magical year of 1967, which didn't end so magically. Let's
continue on with 1967 in a moment.

DK: Okay.

EF: Don, once you told me that 1967 was your most creative year. I'd like to get into it. You also
said you had only a very short time to do your research during that year, and the year didn't end
so well for you. Let's talk about that.

DK: Well, it's certainly a pivotal year in my life. You can see in retrospect why I think things
were building up to a crisis, because I was just working at high pitch all the time. I think I
mentioned I was editor of ACM Communications, and ACM Journal, in the programming
languages sections. I took the editorial duties very seriously. A lot of people were submitting
papers, and I would write long referee reports in many cases, as well as discussing with
referees all the things I had to be doing. I was a consultant to Burroughs on innovative
machines. I was consumed with getting The Art of Computer Programming done, and I had
children, and being a father, and husband. I would start out every day and I would say "Well,
what am I going to accomplish today?" Then I would stay up until I finished it. I used to be
able to do this. When I was in high school and I was editor of the paper, I would do an all-
nighter every week when the paper came out. I would just go without sleep on those occasions.
I was sort of used to working in this mode, where I didn't realize I was punishing my body. We
didn't have iPods and things like that, but still I had the TV on. That was enough to kill the
boredom while I had to do the typing of a lot of material. Now, in 1967, is when things came
to a head. Also, it was time for me to make a career decision. I was getting offers. I think I was
offered full professorships at North Carolina in Chapel Hill, and also at Purdue, I think. I had
to make a decision as to what I should do. I was promoted to Associate Professor at Caltech

surprisingly early. The question is, where should I spend the rest of my life? Should I be a
mathematician? Should I be a computer scientist? By this time I had learned that there was
actually possible to do mathematical work as a computer scientist. I had analysis of algorithms
to do. What would be a permanent home? I visited Stanford. I gave a talk about my left-to-
right parsing. I discovered a theorem about it sitting in one of the student dormitories, Stern
Hall, the night I gave the lecture. I came up there, I liked George Forsythe very much, I liked
the people that I met here very much. I was thinking Stanford would be a nice place, but also
there were other places too that I wanted to check out carefully. I was also trying to think about
what to do long-term for my permanent home. I don't like to move. My model of my life was
going to be that I was going to make one move in my lifetime to a place where I had tenure,
and I would stay there forever. I wanted to check all these things out, so I was confronted with
this aspect as well. I was signed up to be an ACM lecturer, ACM National Lecture Program,
for two or three weeks in February of 1967, which meant that I give a list of three talks. Each
ACM chapter or university that wants to have a speaker, they coordinate so that I have a
schedule. I go from city to city every day. You probably did the same thing about then.

EF: Yep.

DK: Stanford and Berkeley were on this list, as well as quite a few schools in the east. That was
three weeks in February where I was giving talks, about different things about programming
languages, mostly. When I'm at Caltech, I've got to be either preparing my class lectures, or
typing my book and getting it done. I'm in the middle of typing chapter four at this time, which
is the second part of volume two. I'm about, I don't know, one third of the way into volume
two. That's why I don't have time to do research. If I get a new idea, if I'm saying "Here's a
problem that ought to be solved", when am I going to do it? Maybe on the airplane. As you
know, when you're a lecturer every day goes the same way. You get up at your hotel, and you
get on the plane. Somebody meets you at noon and you go out to lunch and then they have
small talk. They ask you the same questions; "Where are you going to be tomorrow, Don", and
so on. You give your lecture in the afternoon, there's a party in the evening, and then you go to
your hotel. The next morning you just go off to the next city. After three weeks of this, I got
really not very good. I skipped out in one case. There was a snowstorm in Atlanta, so I skipped
my talk in Atlanta and I stayed an extra day. I'm trying to give you the flavor of this. But on
this trip in February, also, it turned out to be very fruitful because one of my stops was in
Cornell, where Peter Wegner was a visiting professor. We went out for a hike that weekend to
talk about the main topic in programming languages in those days: how do you define the
semantics of a programming language. What's a good way to formalize the meaning of the
sentences in that language? When someone writes a string of symbols, we wanted to say
exactly what that means, and do it in a way that we can prove interesting results about, and
make sure that we’ve translated it correctly. There were a lot of ideas floating in the air at the
time. I had been thinking of how I'm presenting it in The Art of Computer Programming. I
said, well, you know, there were two basic ways to do this. One is top down, where you have
the context telling you what to do. You start out and you say, “Oh, this is supposed to be a
program. What does a program mean?” Then a program tells the things inside the program

what they're supposed to mean. The other is bottom up, where you just start with one symbol,
this is a number one, and say “this means one”, and then you have a plus sign, and one plus
two, and you build up from the bottom, and say “that means three”. So we have a bottom-up
version of semantics, and a top-down version of semantics. Peter Wegner says to me "Don,
why don't you use both top-down and bottom-up? Have the synthesized attributes from the
bottom up and the inherited attributes that come down from the environment." I said "Well,
this is obviously impossible. You get into circular reasoning. You can't define something in
terms of itself." We were talking about this, and after ten minutes I realized I was shouting to
him, because I was realizing that he was absolutely right. You could do it both ways, and
define the things in a way that they would not interfere with each other; that certain aspects of
the meaning could come from the top, and other aspects from the bottom, and that this actually
made a beautiful combination.

EF: Don, we were speaking about semantics of programming languages and you were shouting at
Peter Wegner.

 DK: I’m shouting at Peter Wegner because it turns out that there’s a beautiful way to combine the
top-down and bottom-up approaches simultaneously when you’re defining semantics. This is
happening on a weekend as we’re hiking at Cornell in a beautiful park by frozen icicles. I can
remember the scene because this was kind of an “aha” moment that doesn’t happen to you very
often in your life. People tell me now no one’s allowed in that park in February because it’s
too risky that you’re going to slide and hurt yourself. It was when all of a sudden it occurred to
me that this might be possible. But I don’t have time to do research. I have to go on and give
more lectures. Well, I find myself the next week at Stanford University speaking to the
graduate students. I gave one of my regular lectures, and then there was an hour where the
students ask questions to the visitor. There was a student there named Susan Graham, who of
course turned out to be a very distinguished professor at Berkeley and editor of Transactions
on Programming Languages and Systems, and she asked me a question. “Don, how do you
think would be a good way to define semantics of programming languages?” In the back of my
mind through that week I had been tossing around this idea that Peter and I had talked about
the week before. So I said, “Let’s try to sketch out a simple language and try to define its
semantics”. On the blackboard, in response to Susan’s questions, we would erase, and try
things, and some things wouldn’t work. But for the next 15 or 20 minutes I tried to write down
something that I had never written down before, but it was sort of in the back of my mind: how
to define a very simple algebraic language and convert it into a very simple machine language
which we invented on the spot to be an abstract but very simple computer. Then we would try
to write out the formal semantics for this, so that I could write a few lines in this algebraic
language, and then we could parse it and see exactly what the semantics would be, which
would be the machine language program. Of course there must have been a lot of bugs in it,
but this is the way I had to do research at that time. I had a chance while I’m in front of the
students to think about the research problem that was just beginning to jell. Who knows how
bad it was fouled up, but on the other hand, being a teacher, that’s when you get your thoughts
in order best. If you’re only talking to yourself, you don’t organize your thoughts with as much

discipline. It probably was also not a bad way to do research. I didn’t get a chance to think
about it when I got home to Caltech because I’m typing up The Art of Computer Programming
when I’m at home, and I’m being an editor, and I’m teaching my classes the rest of the time at
Caltech. Then in April I happened to be giving a lecture in Grenoble, and a Frenchman, Louis
Bolliet, asked me something about how one might define semantics, in another sort of a bull
session in Grenoble in France. That was my second chance to think about this problem, when I
was talking with him there. I was stealing time from the other things. That wasn’t the only
thing going on in ’67. I wasn’t only thinking of what to do with my future life, and editing
journals and so on, I’m also teaching a class at Caltech for sophomores. It’s an all year class,
sort of an introduction to abstract mathematics. While I was looking at a problem, we had a
visitor at Caltech named Trevor-- what’s his last name-- Evans, Trevor Evans. He and I were
discussing how to work from axioms, and to prove theorems from axioms. This is a basic thing
in abstract mathematics. Somebody sets down an axiom, like the associative law; it says that if
parentheses “ab” times “c” is equal to “a” times parentheses “bc.” That’s an axiom. I was
looking at other axioms that were sort of random. One of the things I asked my students in the
class was, I was trying to teach the sophomores how to do mini research problems. So I gave
them axioms which I called the “axioms of a grope.” They were supposed to develop “grope
theory” -- they were supposed to grope for theorems. Of course the mathematical theory well
developed is a “group”, which I had been teaching them; axioms of groups. One of them is the
associative law. Another axiom of groups is that an element times its inverse is equal to the
identity. Another axiom is that the identity times anything, identity times “X”, is “X”. So
groups have axioms. We learned in the class how to derive consequences of these axioms that
weren’t exactly obvious at the beginning. So I said, okay, let’s make a “grope.” The axiom for
a grope is something like “x” times the quantity “yx” was equal to “y”. I give them this axiom,
and I say to the class, what can you derive? Can you find all gropes that have five elements?
Can you prove any theorems about normal subgroups, or whatever it is? Make up a theory.

 As a class we came back in a week saying what theorems could you come up with. We tried to
imagine ourselves in the shoes of an inventor of a mathematical theory, starting with axioms.
Well, Trevor Evans was there and he showed me how to define what we called the “free
grope,” which is the set of all… It can be infinite, but you take all strings of letters, all
formulas. Is it possible to tell whether one formula can be proved equal to the other formula
just by using this one axiom of the grope, “x” times “yx” equals “y”? He showed me a very
nice way to solve that problem, because he had been working on word problems in what’s
called universal algebra, the study of axiom systems. While I was looking at Trevor Evans’
solution to this problem -- this problem arose in connection with my teaching of the class -- I
looked at Trevor Evans’ solution to this problem and I realized that I could develop an actual
method that would work with axioms in general, without thinking that a machine could figure
out. The machine could start out with the axioms of group theory, and after a small amount of
computation, it could come up with a set of 10 consequences of those axioms that would be
enough to decide the word problem for free groups. And the machine was doing it. We didn’t
need a mathematician there to prove, to say, “Oh, now try combining this formula and this
formula.” With the technique I learned from Trevor Evans, and then with a little extra twist

that I put on it, I could set the machine going on axioms and it would automatically know
which consequences of these things, which things to plug in, would be potentially fruitful. If
we were lucky, like we were in the case of group theory axioms, it would finally get to the end
and say, “Now, there’s nothing more can be proved. I’ve got enough. I’ve got a complete set of
reductions. If you apply these reductions and none of them applies, you’ve got it.” It relates to
AI techniques of expert systems, in a way. This idea came to me as I’m teaching this basic
math class. The students in this class were supposed to do a term paper. In the third quarter,
everybody worked on this. One of the best students in the class, Peter Bendix, chose to do his
term paper by implementing the algorithm that I had sketched on the blackboard in one of the
lectures at that time. So we could do experiments during the spring of ’67, trying out a whole
bunch of different kinds of axioms and seeing which ones the machine would solve and which
ones it would keep spinning and keep generating more and more reductions that seemed to go
without limit. We figured out in some cases how we could introduce new axioms that would
bring the whole thing back down again. So we’re doing a lot of experiments on that kind of
thing. I don’t have time to sit down at home and work out the theory for it, but I knew it had
lots of possibilities. Here I had attribute grammars coming up in February, and these reductions
systems coming up in March, and I’m supposed to be grinding out Volume Two of The Art of
Computer Programming. The text of volume one had gone to Addison-Wesley the previous
year, and the copy editor had sent me back corrections and told me, “Don, this isn’t good
writing. You’ve got to change this,” and he’d teach me Addison-Wesley house style. The page
proofs started coming. I started going through galley proofs, but now it was time to get page
proofs for volume one. Volume one was published in January of 1968, but the page proofs
started to be available in the spring also.

EF: So it’s layer, upon layer, upon layer.

DK: Right. There’s a conference in April in Norway on simulation languages; that was another of
the things that I’d been working on at Burroughs. We had a language called SOL, Simulation
Oriented Language, which was an improvement of the state-of-the-art in systems simulation, in
what they called discrete simulation languages. There was an international conference held in
Norway by the people who had invented the Simula language, which wasn’t very well known.
They organized this conference and I went to that, visiting Paris and Grenoble on my way
because Maurice Nivat and I had also become friends. His thesis was on theory of context-free
grammars, and no one in France would read it. He found a guy in America who would
appreciate his work, so he came out and we spent some time together in ’66 getting to know
each other and talking about context-free grammar research. I visited him in Paris and then I
went to Grenoble, and then went to Norway for this conference on simulation languages where
I presented a paper about SOL, and learned about Simula, and so on. My parents and Jill’s
parents are taking care of our kids while we’re in Europe during this time in April. I’m
scheduled in June to lecture at a summer school in Copenhagen, an international summer
school. I’m giving lectures about how to parse, what’s called top-down parsing. “LL(k)” is the
terminology that developed after these lectures. This was a topic that I did put in my draft of
Chapter 10. It was something that I understood well enough that I didn’t have to publish it at

the time. I gave it for the first time in these lectures in June in Copenhagen. That was a one-
week series of lectures with several lectures every day, five days, to be given there. The
summer school met for two weeks, and I was supposed to speak in the second week of that
summer school. All right. What happened then in May is I had a massive bleeding ulcer, and I
was in the hospital. My body gave out. I was just doing all this stuff, and it couldn’t take it. I
learned about myself. I had a wonderful doctor who showed me his textbook about ulcers. At
that time they didn’t know that ulcers are related to this bacteria. As far as they were concerned
it, was just acid.

EF: Stress.

DK: Yeah. People would get operations so that their stomachs wouldn’t produce so much acid, and
things like that. Anyway, he showed me his textbook, and his textbook described the typical
ulcer patient; what other people call the “Type A” personality. It just described me to a “T”, all
of the things that were there. I was an automaton, I think, basically. I had all been all my life
pretty much a test-taking machine. You know, I saw a goal and I put myself to it, and I worked
on it and pushed it through. I didn’t say no to people when they said, “Don, can you do this for
me?” At this point I saw, I could all of a sudden get to understand, that I had this problem; that
I shouldn’t try to do the impossible. The doctor, I say he’s so wonderful because doctors
usually talk down to patients and they keep their secrets to themselves. But here he let me look
at this textbook so I could know that he wasn’t just telling me something to make me feel
good. I had access to anything I wanted to know about my condition. So I wrote a letter to my
publisher, framed in black, saying, “I’m not going to be able to get the manuscript of volume
two to you this year. I’m sorry. I’m not supposed to work for the next three weeks.” In fact,
you can tell exactly where this was. I was writing in a part of volume two when the ulcer
happened, when it started to burst or whatever. I was working out the answer to a problem
about greatest common divisors that goes about in the middle of volume two. It was an
exercise where the answer had a lot of cases to it, so it takes about a page and a half to explain
the answer. It was a problem that needed to be studied and nobody had studied before, and I
was working at it. All of a sudden, bingo. The reason you can find it is if you look in the index
to volume two under “brute force,” it refers you to a page, an answer page. I was solving this
problem by brute force, and so you look at that page, you can see exactly what exercise I was
working on. Then I put it away. I only solved half of the exercise before I could work on it
again a few weeks later. I went into the hospital. It wasn’t too bad, but the blood supply… I
took iron pills and got ready. I could still go to Copenhagen to give my lectures in June.
However, the first week was supposed to be lectures by Nicholas Wirth, and the second week
was supposed to be lectures by me. But Klaus had just gone on an around the world tour with
his wife and had come down with dysentery in India and was extremely ill, and had to cancel
his lectures. So I was supposed to go on in the first week instead. But I was stealing time so
bad, I hadn’t really prepared my lectures. I said, oh, I have a week. I’ll go to Copenhagen,
listen to Klaus and I’ll prepare my lectures. I hadn’t prepared. So I’m talking about stuff that
has never been written down before, never been developed with the students. I get to
Copenhagen with one day to prepare for this week of lectures. Well, one thing in Copenhagen,

there’s wonderful parks all over the city. I sat down under a big tree in one of those parks on
the first day, and I thought of enough things to say in my first two lectures. On the second day
I gave the lectures, and I sat down under that tree and I worked out the lectures for the next
day. These lectures became my paper called “Top-Down Syntax Analysis.” That was the story
of the first part of June. The second part of June I’m going to a conference in Oxford, one of
the first conferences on discrete mathematics. There I’m presenting my paper on the new
method that I had discovered, now called the Knuth-Bendix algorithm, about the word
problems in universal algebra. After I finished my lectures at Copenhagen I had time to write
the paper that I was giving at Oxford the following week. There at Oxford, I meet a lot of other
people and get more stimulated about combinatorial research, which I can’t do. Come back to
Caltech and I’m working as a consultant as well. I resigned from ten editorial boards at this
time. No more ACM Journal, no more Communications. I gave up all of the editorships that I
was on in order to cut down my work load. I started working again on volume two where I left
off at the time of the ulcer, but I would be careful to go to sleep and keep a regular schedule. In
the fall I went to a conference in Santa Barbara, a conference on combinatorial mathematics.
That was my first chance to be away from Caltech, away from my teaching duties, away from
having to type The Art of Computer Programming. That’s where I had three days to sit on the
beach and develop the theory of attribute grammars, this idea of top-down and bottom–up. I
cut out of the whole conference. I didn’t go to any of the talks. I just sat on the beach and
worked on the theory of attribute grammar. As it turned out, I wasn’t that interested in most of
the talks, although I met people that became lifelong friends at the meals and we talked about
things off-line. But the formal talks themselves, I was getting disappointed with mathematical
talks. I found myself, in most lectures on mathematics that I heard in 1966 and ’67, I sat in the
back row and I said, “So what? So what?” Computer science was becoming much more
exciting to me. When I finally made my career decision as to where to go, I had four main
choices. One was stay at Caltech. They offered me full professor of mathematics. I could go to
Harvard as a full professor in applied science, which meant computer science. That was as
close as you could get to computer science there. At Harvard my job would have been to build
up a computer science department there. Harvard was, in Floyd’s term, an advanced backwater
at that point in time for computer science, and Caltech was as well. Because Caltech and
Harvard are so good at physics and chemistry and biology, they were thinking of computers
because they can help chemists and physicists and biologists. They didn’t think of it as having
problems of its own interest. Stanford, where we had the best group of computer scientists in
the world already there, and knowing that computer science had a great future, and also the
best students in the world were there to work with, the program was already built up. I could
come to Stanford and be one of the boys and do computer science, instead of argue for
computer science and try to do barnstorming. Berkeley was the fourth place. I admired
Berkeley very much as probably the greatest all around institution for covering everything.
Everything Stanford covered it covered well, but it didn’t have a professor of Sanskrit, and
Berkeley had a professor of Sanskrit, that sort of thing. But I was worried about Berkeley
because Ronald Reagan was governor. Stanford was a private school and wouldn’t be subject
to the whims of politicians so much as the University of California. Stanford had this great

other thing where the faculty can live on campus, so I knew that I could come to Stanford and
the rest of my life I would be able to bike to work; I wouldn’t have to do any commuting. And
Forsythe was a wonderful person, and all the group at Stanford were great, and the students
were the best. So it was almost a no-brainer, why I finally came to Stanford. My offer from
Stanford came through in February of ’68, which was the end. The other three had already
come in earlier, but I was waiting for Stanford before I made my final decision. In February of
’68 I finally got the offer from Stanford. It was a month after volume one had been published,
and George said, “Oh yes, everybody’s all smiles now.”

EF: Everyone was all smiles because they had gone out on a limb to offer you a full professorship?

DK: No, because the committees were saying, “This guy is just 30 years old.” You know, I was
born in ’38 and this was January of ’68. But when they looked at the book, they said, “Oh,
there’s some credibility here.” That helped me. I got through ’67 and learned how to slack off
a little bit, right? I’ve always felt after that, hearing many other stories of people of when did
they get these special insights that turned out to be important in their research thing, that was
very rarely in a settled time of their life, where they had a comfortable living conditions and
good – the word is escaping me now - but anyway, luxury; set up a nice office space and good
lighting and so forth. No, people are working in a garret, they’re starving, they’ve got kids
screaming, there’s a war going on or something. But that’s when they get a lot of their most…
almost every breakthrough idea. I’ve always wondered, if you wanted to set up a think tank
where you were going to get the most productivity out of your scientists, wouldn’t you have to,
not exactly torture them, but deprive them of things? It’s not sustainable. Still, looking back,
that was a time when I did as much science as I could, as well as try to fulfill all my other
obligations.

EF: Don, to go back to the Stanford move. A couple of questions come up, because I was around. I
remember sitting in George Forsythe’s office, just a handful of us people considering the
appointment of this young guy from Caltech who had this wonderful outline of books. One of
the things that we were discussing was [that] Don Knuth wanted us to also hire Bob Floyd. It
turns out that hiring Bob Floyd was a wonderful idea. Bob Floyd was magnificent. But it
hadn’t occurred to us until you brought it up, and then we did it. Can you go into that
story?DK: Yeah, because Bob was a very special person to me throughout this period. As I
said, I’d been reading the literature about programming languages avidly. When I was asked to
write a book about it in ’62, I knew there were these people who had written nice papers, but
nobody knew how to sort out the chaff from the wheat. In the early days, like by 1964, my
strong opinion was that five good papers about programming languages had ever been written,
and four of them were by Bob Floyd. I met Bob the first time in summer of ’62 when I was
working on this Fortran compiler for Univac. At the end of the summer I went to the ACM
conference in Syracuse, New York, and Bob was there. We hit it off very well right away. He
was showing me his strange idea that you could prove a computer program correct, something
that had never occurred to me. I said I was a programmer in one room, and I was a
mathematician in another room. Mathematicians prove things. Programmers write code and

they hope it works, and they twiddle it until it works. But Bob’s saying, no, you don’t have to
twiddle; you can take a program and you can give a mathematical proof that it works. He was
way ahead of me. There were very few people who had ever conceived of putting those two
worlds together at that time. EF: [John] McCarthy was one of them, though.DK: McCarthy,
exactly, right. John and Bob were probably… I don’t know if there was anybody in Europe yet
who had seen this right. Bob tells me his thoughts about this when I meet him in this
conference in Syracuse. Then I went to visit him a year later when I was in Massachusetts at
the crisis meeting with my publishers. He lived there, and I went and spent a couple of days in
Topsfield where he lived. We shared ideas about sorting. Then we had a really exciting
correspondence over the next time where letters go back and forth, each one trying to trump
the other about coming up with a better idea about something that’s now called sorting
networks. Bob and I developed a theory of sorting networks between us in the correspondence.
We were thinking at the time, this looks like Leibnitz writing to Bernoulli in the old days of
scientists trying to develop a new theory. We had a very exciting time working on these letters.
Every time I would send a letter off to Bob, thinking, “Okay, now this is the last result,” he
would come back with a brand new idea and make me work harder to come up with the next
step in our development of this theory. We weren’t talking only about programming languages;
we were talking also about a variety of algorithms. We found that we had lots of common
interests. He came out to visit me a couple of times in California, and I visited him. So when I
was making my career decision, I said, “Hey Bob, wouldn’t it be nice if we could both end up
at the same place?” I wrote him a letter, probably the same letter where I was describing to him
my idea about left-to-right parsing. As soon as I discovered it, I wrote immediately to Bob a
12-page letter with ideas of left-to-right parsing after I had come up with the idea. He comes
back and says, “Oh, bravo, and did you think about this,” and so on. So we had this going on.
Then at the beginning of ’67 I said, “You know, Bob, why don’t we think about trying to get
into the same place together? What is your take on the different places in the world?” At that
time he was at Carnegie. He had left Computer Associates and spent, I think, two years at
Carnegie. He was enjoying it there, and he was teaching and introducing new things into the
curriculum there. He wrote me this letter assessing all of the schools at the time, the way he
thought their development of computer science was. When I quoted him a minute ago saying
Harvard was an advanced backwater, that comes out of that letter that he was describing the
way he looked at things. At the end of the letter he says -- I had already mentioned that
Stanford was my current number one but I wasn’t totally sure -- and at the end he ended up
concurring. He said if I would go there and he could go there, chances are he would go there,
too. I presented this to Forsythe, saying why don’t we try to make it a package deal. This
meant they had to give up two professors to replace us with. They couldn’t get two new billets
for us, and so it was a lot of work on Stanford’s part, but it did develop. Except that you had to
lose two other good people, but I think Bob and I did all right for the department. EF: Maybe
that was your first great service to our department was recruiting Bob Floyd.

DK: Well, I don’t know. I did have to work a little bit the year after I got here. To my surprise
they had appointed him as an associate professor but me as a full professor. It was
understandable because he didn’t have a Ph.D. He had been a child prodigy, and I think he had

gotten into graduate school at something like age 17, and then dropped out to become a full
time programmer. So he didn’t have the academic credentials, although he had all the best
papers in the field. I had to meet with the provost and say it’s time to promote him to full
professor. The thing that clinched it was that he was the only person that had gotten -- this was
1969 -- he was the only person that had been invited to give keynote addresses in two sessions
of the International Congress in Ljubljana.

EF: In ’71.

DK: ’71, yeah. That helped.

EF: That was IFIPS.

DK: Yeah, IFIPS: Information Processing.

EF: Don, maybe we could just say a little more about Bob [Floyd] and his life at Sanford.

DK: Right. As it turned out, when we got together we couldn’t collaborate quite as well as when
we were writing letters. I noticed this was true in other cases. Like sometimes I could advise
my students better when I was on sabbatical than when we were having weekly meetings. It’s
not easy to work face- to-face all the time, but rather sometimes offline instead of online. I told
you my experience with Marshall Hall -- that I couldn’t think in his presence. I have to confess
that there are some women computer scientists that when I’m in their presence, I think only of
their brown eyes. I love their research, but I’m wired in certain ways that mean that we should
write our joint papers by mail, or by fe-mail. Anyway. We did a lot of joint work in the early
‘70s, but also it turned out that when Bob became chair of the department… I’m not sure
exactly when that was; probably right after my sabbatical.

EF: I think 1972.

DK: Yeah. I went on leave of absence for a year in Norway and then I came back and Bob was
chair of the department. He took that job extremely seriously, and worked on it to such an
extent that he couldn’t do any research very much at all during those three or four years when
he was chair. I don’t know how many years, five years.

EF: I started being chair in ’76, so like four years.

DK: Okay, so it was four years. That included very detailed planning all aspects of our new
building. When he came back, then he had two years of sabbatical. That’s one credit that you
get. So there was a break in our joint collaboration. Afterwards, he never quite caught up to
the leading edge of the same research topics that I was in. We would work on things
occasionally, but not at all the way we had done previously. We wrote a paper that we were
quite pleased with at the end of the ‘80s, but it was not the kind of thing that we imagined
originally, that would always be in each other’s backyard. In fact, I’m a very bad coworker.
You can’t count on me to do anything, because it takes me a while to finish stuff and I think of
something else. So how can anybody rely on me as being able to go with their agenda? Bob,

during the ‘70s, came up with a lot of ideas, like his method for half-tone, for making gray-
level pictures, that is in all the printers of the world now. That was done completely
independently. I didn’t even know about it until a couple years after he had come up with these
inventions. But I’m dedicating a book to Bob. My collected works are being published in eight
volumes. The seventh volume is selected papers on design of algorithms. That one is dedicated
to Bob Floyd, because a lot of the joint papers, joint work we did, occurs in that volume. He
was one of the few people in my life that really I consider one of my teachers, the gurus that
inspired me.

EF: Don, I’m going to call that the end of your first period of Stanford. I wanted to move into some
questions about what I call your second Stanford period. This is very different. I’ve sort of
delineated this as a very different time. I saw you shifting gears, and I couldn’t believe what
was happening. You became, in a solitary way, the world’s greatest programmer. It was your
engineering phase. This was TeX and METAFONT. All of a sudden, you disappeared into just
miles of code, and fantastic coding ideas just pouring out, plus your engineering. We were in
the new building and you were running back and forth from your office to where this new
printing machine was installed. You’d be debugging it with your eyes and with your symbols
and pulling your hair out of your head, because it wasn’t working right, and all that. You were
just what the National Academy of Engineering would call an engineer. Tell me about that
period in your life.

DK: Okay, well, it ties in with several things. There was a year that you didn’t see me when I was

up at McCarthy’s lab...

EF: Well, I heard all about it.

DK: …starting this. One of the first papers that I collaborated with Bob Floyd on in 1970 [had] to
do with avoiding go-to statements. There was a revolutionary new way to write programs that
came along in the ‘70s, called structured programming. It was a different way than we were
used to when I had done all my compilers in the ’60s. Bob and I, in a lot of our earliest
conversations at Stanford, were saying, “Let’s get on the bandwagon for this. Let’s understand
structured programming and do it right.” So one of our first papers was to do what we thought
was a better approach to this idea of structured programming than some people had been
taking. Some people had misunderstood that if you just get rid of go-to statements you had a
structured program. That’s like saying zero population growth; you have a numerical goal, but
you don’t change the structure. People were figuring out a way to write programs that were
just as messy as before, but without using the word “go-to” in them. We said no, no, no; here’s
what the real issues are. Bob and I were working on this. This is going on, and we’re teaching
students how to write programs at Stanford, but we had never really written more than
textbook code ourselves in this style. Here we are, being full professors, telling people how to
do it, having never done it ourselves except in really sterile cases with not any real world
constraints. I probably was itching… Thank you for calling me the world’s greatest
programmer. I was always calling myself that in my head. I love programming, and so I loved

to think that I was doing it as well as anybody. But the fact is, the new way of programming
was something that I didn’t have time to put much effort into.

EF: The emphasis in my comment was on the solitary. You were a single programmer doing all
this. No team.

DK: That’s right. As I said, it’s hard for me to have somebody else doing the drumming. I had to
march to my... I had The Art of Computer Programming, too. I could never be a reliable part of
a team that I wasn’t the head of, I guess. I did first have to get into that mode, because I was
forced to. I was chair of the committee at Stanford for our university reports. We put out lots
and lots of reports from all phases of the department through these years. We had a big mailing
list. People were also trading their reports with us. We had to have a massive bookkeeping
system just to keep the correspondence, so that the secretaries in charge of it could know who
had paid for their reports, who we were sharing with. All this administrative type of work had
to be done. It seemed like just a small matter of programming to do this. I had a grad student
who volunteered to do this as his master’s project; to write-up program that would take care of
all of the administrative chores of the Stanford tech reports distribution. He turned in his term
paper and I looked at it superficially and I gave him an A on it, and he graduated with his
master’s degree. A week later, the secretary called me up and said, “Don, we’re having a little
trouble with this program. Can you take a look at it for us?” The program was running up at
the AI lab, which I hadn’t visited very often. I went up there and took a look at the program. I
got to page five of the program and I said, “Hmmm. This is interesting. Let me make a copy of
this page. I’m going to show it to my class.” [It was] the first time I saw where you change one
symbol on the page and you can make the program run 50 times faster. He had misunderstood
a sorting algorithm. I thought this was great. Then I turned to the next page and he has a
searching algorithm there for binary search. I said, “Oh, he made a very interesting error here.
I’ll make a copy of this page so I can show my class next time I teach about the wrong way to
do binary search.” Then I got to page eight or nine, and I realized that the way he had written
his program was hopelessly wrong. He had written a program that would only work on the test
case that he had used in his report for the master’s thesis, that was based on a database of size
three or something like this. If you increased the database to four, all the structures would
break down. It was the most weird thing. I would never conceive of it in my life. He would
assume that the whole database was being maintained by the text editor, and the text editor
would generate an index, the way the thing did. Anyway, it was completely hopeless. There
was no way to fix the program. I thought I was going to spend the weekend and give it to the
secretary on Monday and she could work on it. There was no way. I had to spend a month
writing a program that summer -- I think it was probably ’75, ’76 -- to cover up for my terrible
error of giving this guy an A without seeing it. The report that he had, made it look like his
program was working. But it only worked on that one case. It was really pathetic. So I said,
“Okay, I’ll use structured programming. I’ll do it right. This is my chance to do structured
programming. I’ll get a learning experience out of it.” I got a good appreciation for writing
administrative-type programming. I used to think was trivial, [but] there was a lot to it. After a
month I had a structured program that would do Stanford reports, and I could install that and

get back to the rest of my life. Meanwhile, I’d been up at the AI lab and I met the people up
there. I got to know Leland Smith, who is a great musician professor. Leland Smith told me
about a problem that he had. He was typesetting music. He says, “I’ve got a piece of music and
it maybe has 50 bars of music. I have to decide when to turn the page. I know how many notes
are in each bar of the music, and I know how much can fit on the page. But I like to have the
breaks come out right. Is there any algorithms that could work for this?” He described the
problem with me. He had the sequence of numbers, how many notes there are, and try to find a
way to break it into lines and pages in a decent way. I looked at the problem and said, “Hey
Leland, this is great. It’s a nice application of something we in computer science call the
dynamic programming algorithm (method). Look, here’s how dynamic programming can be
used to solve this problem.” Then I’m teaching Stanford’s problem seminar the next fall, and it
came up in class. I would show the students, “Look how we had this music problem, and we
can solve it with dynamic programming.” One of the students, I don’t remember who it was,
raised his hand and said, “You know, you could also use that to text, to printing books. You
could say, instead of notes into bars, you could also say you’ve got letters and words into lines,
and make paragraphs choosing good line breaks that way.” I said, “Hey, that’s cool. You’re
right.” Then comes, in the mail, the proof sheets for the second edition of volume two. I had
changed a lot of pages in volume two of The Art of Computer Programming. I got page proofs
for the new edition. During the ‘70s, printing technology changed drastically. Printing was
done with hot lead in the ‘60s, but they switched over to using film in the ‘70s. My whole book
had been completely retypeset with a different technology. The new fonts looked terrible! The
subscripts were in a different style from the large letters, for example, and the spacing was
very bad. You can look at books printed in the early ‘70s and it turns out that if it wasn’t
simple -- well, almost everything looked atrocious in those days. I couldn’t stand to see my
books so ugly. I spent all this time working on it, and you can’t be proud of something that
looks hopeless. I’m tearing out my hair. I went to Boston again and they said, “Oh, well, we
know these people in Poland. They can imitate the fonts that you had in the old hot lead days.
It’s probably not legal, but we can probably sneak it through without…” You know, the
copyright problems of the fonts. “They’ll try to do the best they can, and do better”. Then they
come back to me, at the beginning of ’77, with the new version done with these Polish fonts
which are supposed to solve the problem. They are just hopelessly bad. At the very same time,
February of ’77, I’m on Stanford’s comprehensive exam committee, and we’re deciding what
the reading list is going to be for next year’s comp. Pat Winston had just come out with a new
book on artificial intelligence, and the proofs of it were just being done at III Corporation
[Information International, Incorporated] in Southern California; at [Ed] Fredkin’s company.
They had a new way of typesetting using lasers. All digital, all dots of ink. Instead of
photographic images and lenses, they were using algorithms, bits. I looked at these galley
proofs of Winston’s book. I knew it was just bits, but they looked gorgeous. They looked
absolutely as good as anything I’d ever seen printed by any method. By this time I was
working at the AI lab, where we had the Xerox Graphics Printer, which did bits at about 120
dots per inch. It looked interesting, but it didn’t look beautiful by any stretch of the
imagination. Here, with I think this was 1,000 dots per inch at III, you couldn’t tell the

difference. It was like: I come from Wisconsin and in Wisconsin we never eat margarine.
Margarine was illegal to bring into the State of Wisconsin unless you didn’t color it. I’m raised
on butter. It’s the same thing here. With typography, I’m thinking: okay, digital typography
would have to be like margarine. It couldn’t be the real thing. But, no! Our eyes don’t see any
difference when you’ve got enough dots to the inch. A week later, I’m flying down with Les
Earnest to Southern California to III, and finding out what’s going on there. How can we get
this machine and do it? Meanwhile, I planned to have my sabbatical year in ‘77-’78. I was
going to spend my sabbatical year in Chile.

EF: Don, can I interrupt you just a second?

DK: Yeah.

EF: I don’t know if Fredkin was still involved with III at that time. But III never gets enough credit
for those really revolutionary ideas.

DK: That’s right.

EF: Not just those ideas, but the high speed graphics ideas.

DK: Oh yeah. That’s when I met Rich Sherpel [ph?] down there, and he was working on character
recognition problems. They had been doing it actually for a long time on microfilm, before
doing Winston’s book. This was the second generation. First they had been using the digital
technology at really high resolutions on microfilm. And so many other things [were] going on.
Fredkin is a guy who--

EF: Right at the beginning, Fredkin revolutionized film reading, using the PDP-1. Anyway, I
interrupted you. You were on your Chile.

DK: Ed’s life is ten times as interesting as mine. I’m sure that every time I hear more about Ed, it
adds just another… He’s an incredible person. We got to get 20 oral histories.

EF: I think Ed may be a subject for one of these oral histories of the Computer History Museum.

DK: Yeah, we’ve got to do it. Anyway, I cancelled my sabbatical plan for Chile. I wrote to them
saying I’m sorry; instead of working on volume four during my sabbatical, I’m going to work
on typography. I’ve got to solve this problem of getting typesetting right. It’s only zeros and
ones. I can get those dots on the page, and I’ve got to write this program. That’s when I
became an engineer.

EF: I’m going to let you go on with this, but I just wanted to ask a question in the middle here, just
related to myself, actually. How much of this motivation to do TeX related to your just
wanting to get back to being a programmer? Life was going on in too abstract a way, and you
wanted to get back to being a programmer and learning what the problems were, or the joy of
programming.

DK: It’s a very interesting hypothesis, because really you can see that I had this. The way I

approached the CS reports problem the year before was an indication of this; that I did want to
sink my teeth into something other than a toy problem. It wasn’t real large, but it wasn’t real
small either. It’s true that I probably had this craving. But I had a stronger craving to finish
volume four. I did sincerely believe that it was only going to take me a year to do it.

EF: Maybe volume four wasn’t quite ready. Maybe…

DK: Oh, this is true.

EF: …it was still cooking.

DK: No, no, absolutely. You’re absolutely right. In 1975 and ’76, you can check it out. Look at
the Journal of the ACM. Look at the SIAM Journal on Computing. Look at, well, there’s also
SIAM Review and there’s math journals, combinatorial journals, Communications of the
ACM, for that matter. You’ll find more than half of those articles are things that belong in
volume four. People were discovering things right and left that I knew deserved to be done
right in volume four. Volume four is about combinatorial algorithms. Combinatorial
algorithms was such a small topic in 1962 when I made that chapter seven of my outline that
Johan Dahl asked me, when I was in Norway, “How did you ever think of putting in a chapter
about combinatorial algorithms in 1962?” I said, “Well, the only reason was, that was the part I
thought was most fun.” I really enjoy writing, like this program for Bose that I did overnight. It
was a combinatorial program. So I had to have this chapter just for fun. But there was almost
nothing known about it at the time. People will talk about combinatorial algorithms nowadays
[and] they usually use “combinatorial” in a negative way. In a pejorative sense, instead of the
way I look at it. They say, “Oh, the combinatorial is going to kill you.” “Combinatorial” means
“It’s exploding. you can’t handle it, it’s a huge problem.” The way I look at it is, combinatorial
means this is where you’ve got to use some art. You’ve got to be really skillful, because one
good idea can save you six orders of magnitude and make your program run a million times
faster. People are coming up with these ideas all the time. For me, the combinatorial explosion
was the explosion of research. Not the problems exploding, but the ideas were exploding. So
there’s that much more to cover. It’s true that I also in the back of my mind I’m scared stiff
that I can’t write volume four anymore. So maybe I’m waiting for it to simmer down.
Somebody did say to me once, after I solved the problem of typesetting, maybe I would start to
look at binding or something, because I had to have some other reason [to delay]. I’ve certainly
seen enough graduate student procrastinators in my life. Maybe I was in denial.

EF: Anyway, you headed into this major engineering problem.

DK: As far as I knew, though, it was going to take me a year. I was going to work and I was going
to enjoy having a year of writing this kind of a program. The program was going to be just for
me and my secretary, Phyllis; my super-secretary, Phyllis. I was going to teach her how to do
it. She loved to do technical typing. I could write my books and she could make them; dotting
I’s and crossing T’s and spit and polish that she did on my math papers when she always typed
my math papers.

Session 2: March 21, 2007

 EF: My name is Edward Feigenbaum. I am a Professor of Computer Science Emeritus at Stanford
University and a colleague of Donald Knuth’s since the day that he showed up at Stanford.
This is session No. 2 of an oral history in which Don has been discussing his early work and
what we call the first Stanford period. We’re now about to go into what we’re calling the
second Stanford period, in which he discusses his work on typesetting, printing, and font
design, TeX and Metafont. But Don, before we start on that, I want to mention in the week
since we met for the first session, the news came out that John Backus, the leader of the team
that developed Fortran for IBM, died. John’s work intersects to some degree with the work that
you spoke about last week in the first part of the interview, the work that Alan Perlis did at
Carnegie Mellon, at that time Carnegie Tech, on IT, Internal Translator, and the work that you
did on RUNCIBLE. I happened to be around both places at that time. I was a summer student
working for IBM at the time that the Fortran group was working in New York, and interacted
with them. Then I came back to Carnegie Tech and was startled, actually, seeing Perlis’s
compiler up and running on the [IBM] 650. It looked to me as if Perlis’s work was up and
running somewhere around 6 months before, maybe 9 months before, Fortran was running on
the IBM 704 in New York. The question for you is: is priority important in computer science
research as it is in many other disciplines, like chemistry or physics? Is there a priority
discussion to be had here on the question of Fortran and IT?

DK: Okay, those are great questions. It’s funny you’d ask that, because the number one thing on
my mind as I was walking into the building this morning was thinking about John Backus’s
death. It was a shock to me to learn about it yesterday, but then I was just thinking, “Oh yeah,
he always wore clothes like this.” [Motions to himself] Whenever I saw him he was wearing a
denim jacket. I can say just a few orthogonal things about the whole situation that strike me
first. In the first place, when I was a student we had no information at all about Fortran. I
didn’t hear about it until after I had been using IT, and I think after RUNCIBLE. It was, like,
1959 when people were coming out with something called FORTRANSIT, which was a
translator from Fortran to IT, to IT, so that people on the 650 could use the Fortran language.
You see, the IBM 650 was the world’s first mass-produced computer, the first time there were
more than 100 of any one kind of computer. Fortran was developed for a 704, which there
were several dozen of those, but it was aircraft industries and so on. It was people who could
afford a much bigger kind of machine than the 650. It was a different world. You were lucky
as a summer student. You could see the other world, but I was more in the boondocks. I told
you last time that priority was so far from my mind when I wrote this article about
RUNCIBLE for the Communications [of the ACM] that I failed to mention any of the people
who were working with me. We had this team at Case, but we didn’t name any names in our
story as to who came up with the improvements that we made, because it wasn’t something
that we knew anything about. But that might have been my naiveté as a college undergraduate.
The first time I learned about upsmanship or something -- academic priority -- was, in fact,
from my teacher Bose, the man who worked on Latin squares. The reason he wanted me to get
this program working overnight is because he was in intense competition with another group in

Canada that was also trying to find Latin squares of order 12. It turned out it was
approximately a dead heat between the two groups. That amazed me, that there could be so
much competition for being first at the time. It wasn’t part of the culture that I grew up in. All I
can report is that I was amazed later on to find out also, when people are talking about the
discovery of DNA and all this, how much passion went into these things, because it just wasn’t
something that I personally experienced. But it just might be, again, my naiveté. I presented a
paper at the ACM Conference in 1962 in Syracuse, which was the summer that I wrote my
Fortran compiler for the Univac solid-state machine. At the end of that summer I gave this
paper at the ACM called, “A History of Writing Compilers.” I guess I didn’t call it “The
History of Writing Compilers.” Basically I was trying to explain in my talk what I knew about
the various developments that had come up with in technology for writing compilers. Of
course I mentioned Fortran, and the ways in which they had dealt with the question, for
example, of operator precedence. That was, if you write AxB+C without parentheses, Fortran
would recognize that as first multiply A by B, and then add C. I’ll go back and give you a
better example. AxB+CxD, but you write that without any parentheses. Now what would
happen in Fortran, is Fortran would know that the mathematicians usually mean by that that
you take A and multiply it by B, and you take C and multiply by D, and then you add the two
things together. But IT wouldn’t do it that way. IT would require you to put parentheses if you
want to do it, and, if my memory is correct, otherwise it would associate to the right. So it
would take A times the quantity B plus the quantity C times D. So Fortran had to invent a way
to do this. The way they did it was rather clever. They replaced the times sign by right
parenthesis times left parenthesis, and they replaced the plus sign by two right parentheses plus
two left parentheses. Then they put a whole bunch of parentheses around the whole thing. The
result is that you had an expression that was fully parenthesized, but since you had guarded the
plus sign with two parentheses and the times with only one, the times was done first. It was a
clever idea. It’s just one of the things I mention in my paper in this Syracuse thing. Well, a
reviewer of my paper afterwards said, “He didn’t talk about the history of writing compilers.
He just talked about the history of him writing one particular compiler.” Well, if you look at
my paper you’ll see it’s not a fair criticism. The reviewer was undoubtedly tee’d off that I had
not mentioned his compiler. I gave a history of many ideas that were used in building
compilers, but I didn’t give a history of what people had done in compilers. As years went on,
I got more interested in history. In 1962 I was 24 years old. It’s like Mark Twain or somebody
said, that “When you’re a teenager you think your parents are the stupidest people in the world.
Five years later you wonder how they could learn so much in five years.” You get more
interested in history and the overall thing. Well anyway, this criticism, that I hadn’t given a
very comprehensive history of compilers, weighed on my mind. So the next few years after
’62, I actually started looking into the history of compilers, trying to get a real understanding
as to who did what when, and first, and so on. Where did the ideas come from before the little
excrescences of the story that I knew. In fact, the main lecture I was giving on my ACM
lecture tour in 1967 was the real early history of writing compilers. By that time I had gone
through and I had studied Grace Hopper’s work, and I had studied Backus’s work, and the
Fortran 0, and the many developments in England and Russia and so on, that had taken place

in the earliest days. So the talk that I was giving when I’m making this nationwide lecture tour
is mostly this talk of redeeming myself for giving a very unbalanced view of the history of
compiler development that I had given in 1962. Later on I worked with my student Luis Trabb
Pardo in order to really do it right, because the Harvard University Press had asked me to edit a
sourcebook on computer science which was intended to print the documents from the early
days that had come out before their time. I had collected a lot of these early things. They’ve
done this with many other fields: sourcebook on logic, sourcebook on mathematics,
sourcebook on chemistry, and that kind of thing. Harvard had a big series. I was asked to do a
sourcebook on computer science. In the course of this I worked with Luis to get a really
thorough history of programming languages, their early development. We presented this as a
paper at a big conference in Los Alamos in 1976. 1976 was the year everybody had history on
mind, because it was the bicentennial of America. We had a big conference where almost all
the computer pioneers were living were assembled there. People like [Konrad] Zuse came,
who I met from Europe, and the people who had worked on the Colossus computers. All these
pioneers were there. The paper that I presented at that time was “The Early History of
Computer Languages.” This was one of the most difficult papers to write, in the sense of total
amount of work expended, because what I presented in this talk was 20 predecessors to
Fortran. Not only was Fortran not number 1, but it was number 21, basically. Although one of
the 20 preceding Fortran was the preliminary specs of Fortran, which wasn’t implemented, but
people were using it in mockups and trial runs. Going to Zuse’s work, for example, Zuse had a
high level language, his PlanKalkul. Many, many other pioneers [attended]. I brought that
picture all together. I’m quite proud of the paper now, because of all the work I put into it. As I
was writing it I found out actually I only had 19 predecessors of Fortran. Just a week before
the conference I learned about another one at Livermore that had been developed. I went out to
Livermore, and right in my own backyard was one of the first. So there was a great amount of
activity going on. IT was part of this, for sure. But most of the people didn’t know [of] the
existence of the others. Fortran itself was strongly influenced by a compiler for the Whirlwind
computer that John Backus learned about when he went to a conference at MIT in 1954. Then
John got his team together and did that. I had a great admiration for John. I remember that the
first time I came to Stanford, which was about 1964, was when I first met him. We had
corresponded. He and Barbara invited me to their house, and he also introduced me to topless
bars at the time. It was interesting as a nice phenomenon in San Francisco, you know. We had
a pleasant evening together. That was on the same trip that I visited Stanford at Forsythe’s
invitation. John and I always hit it off well, and I admired his breadth of interest in all these
things. But your question was mostly about priority. I think it cuts two ways. In the first place,
I don’t like to think of it as saying somebody did it before somebody else. That’s the popular
interpretation of the priority. But the opposite is where you just have an idea and you have no
idea where it came from.

That’s very bad, I think, just to assume that ideas have no connection to each other or they
didn’t spring from somewhere. Because how are we going to get another idea tomorrow if we
don’t have a lot of case studies as to how ideas can germinate? I go out of my way in my books
The Art of Computer Programming to try to track down the sources of the concepts that we

have in computer science. Sometimes I tell people I only do this in order to make computer
science respectable, to show that it’s not a fly-by-night thing, but it’s deeply rooted in ancient
history and so on. Well, of course, it’s nice to have computer science a little bit respectable.
We are the new kid on the block. But that’s not really the point. The point is that really there
were people who would’ve been computer scientists, if computers had been around, that were
living a hundred years ago. They just happened to have been born at the wrong time, but they
had the same kind of strange way of looking at things that I do. I can see that in their writings.
I was reading last year a manuscript from 14th century India, and I felt the guy was talking to
me. I doubt if any of his contemporaries really knew what he was, but here it was. I said to my
wife, “This guy is a computer scientist. I know exactly what’s going on because I went through
the same kind of a thought process when I was looking at a similar problem when I was
younger.” So the idea of priority is more, instead, really learning the human element of it.
How somebody was able to combine ideas and then make a non-obvious leap that would then
influence somebody else. For this reason I love to read source documents instead of [reading]
somebody boiling down a source document. I boil it down myself in my books. I try to
recommend that. I try to give places so that people can check out the originals when they can.
We’d have much less of this cutthroat idea of competition in the field than I read about when I
study the novel by my friend who invented the birth control pill.

EF: Carl Djerassi.

DK: Yeah, Carl Djerassi’s novel, “The Bourbaki Gambit”. Or something like this, right? It’s all
about a world of science that I don’t feel computer science inhabits. It’s a different…

EF: Yeah, Carl’s a chemist.

DK: Yeah.

EF: I was going to bring a quote from a chemist to this interview but I didn’t have it exactly right
so I didn’t do it. But in chemistry, the knife is sharp.

DK: Yeah. I worked on open source publishing a few years ago, and I was surprised to find out
that… I was looking at some of the general policy, and in other fields than computer science
when you submit your paper, you can list people that you don’t want to be referees of your
paper. It blew my mind.

I said, “Why do you do this?” and he said, “Well, because they think the other guys are going
to steal their ideas.” <laughs> We share ideas. The whole Silicon Valley culture, the venture
capitalists get together for lunch every Tuesday and say, “These are the startups I’m thinking
of starting,” and somebody will say, “Well why don’t you change it a little bit?” They share
ideas openly because they know that there’s a half- life of these ideas, and in six months they’ll
get better. The companies are even better because of it. The biology community would never
think of such a thing, of sharing their plans for new development. It is quite a different culture.
I think you’re right.

EF: Don, just a small follow-up question for this. As you were speaking, it was bubbling in my
mind that in various sciences, including ours, the big prizes are sometimes given for what are
considered breakthrough ideas. So a young person can win a big prize. Sometimes it’s given
for career contributions. The Nobel Prizes are like this too. Sometimes a brilliant thing flashes
up on the screen, like the CT scan. The Nobel Prize was given to a EE guy for the CT scan, in
medicine. But often the prize is given to someone for a career’s worth of work. Do you think
that we have breakthrough ideas in computer science of that sort?

DK: Yeah, but I minimize their importance, in a sense. We do have landmark ideas that sort of all
of a sudden… Something like in theoretical field, the idea of NP-completeness. All of a sudden
we had thousands of people inspired by this idea. But how many of them are there? It was
interesting. I wrote a letter to Allen Newell when I was starting to write “The Art of Computer
Programming.” I think I wrote it to him in 1963 or something like this. I said, “Allen, I’m
struck by the fact that all good ideas in computer science were invented before 1960 and we’ve
just been rediscovering the wheel since then.” I’m not sure, but sort of that was the thrust of
my letter. Allen replied to me, “Oh no, Don, you’re suffering from the bow wave
phenomenon,” Or something like this. Then I had another conversation with Juris Hartmanis,
who was the head of the department at Cornell. Juris was a wonderful leading person in
Automata Theory, and he happened to have been a student of Marshall Hall as well. He was
recruiting me to come to Cornell at the same time I was considering Berkeley, and Stanford,
and other things. He visited me, and I visited Cornell with the serious idea of going there, and
didn’t put it on my final list because people don’t drop into Cornell the way they drop into
Stanford. I would have to go to them, and I don’t like traveling that much. But we had this
conversation, and one of the questions that struck me, he said, “Don, what was the most
important new idea in computer science during the past year?” I couldn’t think of a single
thing. Say 1965, or something like that. I couldn’t think of any breakthrough. For the next ten
or so years, I asked myself the same thing at the end of every year. What was the breakthrough
that occurred this year? I couldn’t come up with anything. Almost never could come up with
anything.

On the other hand, in ten years the whole field had changed. I realized that what it really is, it’s
like a great wall, where everybody’s contributing bricks to the wall, and each brick… In other
words, it’s the community enterprise that really has made it such a thriving field. I like to give
credit to everybody who puts in one of these bricks. Of course, we’ve got to have the major
prizes in order to get into the newspaper and things like this. But so many things go into this.
The big breakthrough is not the real story, although they’re wonderful when they occur. That’s
my take on that.

EF: Thanks, Don. We could sit here and discuss that endlessly. I’m going to resist doing that
because I’d like to get on to the moment when you are sitting in that little office in [Stanford’s
Margaret] Jacks Hall, and you decide that you and Phyllis need a better language in which to
basically, essentially, typeset your books. Listening to the early part of your conversation about
this last week, it occurred to me that one level below the surface, there’s something else about

books. My wife just stopped being, she was a trustee, a member of the Board of the San
Francisco Center for the Book. She’s a book artist and she loves books.

DK: Oh, I see. I visited there two weeks ago.

EF: I get this feeling that there’s something about books inside you, inside your head, that you
absolutely love. Can you just tell us about your love affair with books?

DK: That goes very deep. My parents disobeyed the conventional wisdom by teaching me to read
before I went into kindergarten. All of their friends said, “No, he’s going to be bored in
school,” but I was the youngest member of the “bookworm club” in Milwaukee Public Library.
I think I was two-and-a-half years old, or something like this. The Milwaukee Journal ran a
little blurb about it with my picture in it because I was a member of the bookworm club at the
library. I loved books from a child. In those days there weren’t big drug problems and so on,
and little kids could ride the streetcars downtown. I went down to the library one day, and the
lights went out in the library. I went over to the window so I could see better the book I was
reading. It didn’t occur to me the library was closing. My parents called a couple hours later
and said, “Where is he? Where’s our son?”, and the librarian found me in the book. I have kind
of a strange love affair with books going way back. In my undergraduate years, I think I
mentioned last time that a lot of my favorite textbooks were published by Addison-Wesley: the
calculus book that I had, the physics book that I had, the book on number theory that I had
seen. Addison- Wesley, for technical books, had a special thing. The president of the company
had actually done something that other publishers… I know you were an editor for McGraw-
Hill. McGraw-Hill would farm out their typesetting, but Addison-Wesley had its own house
composition plant. Hans Wolf had his team of people making the type, right next door to
where the editorial offices were. It was the philosophy of the company really to get a special
house style, and really good designers, and they made their mark on it. They also published the
first book on computer science: Wilkes, Wheeler, and Gill in 1951, or something like this. That
was one of the very first books Addison-Wesley put out, at the time when it was a struggling
new company. I had also this thing about the appearance of books. I wanted my books to be
something that other readers would treasure the appearance of it, not just that there were some
words in there.

EF: Let’s go back to the time when you were planning TeX, and Phyllis was in the outside office,
and the two of you needed a language.

DK: Right. Phyllis had been typing all of my technical papers. I have never seen her equal
anywhere, and I’ve met a lot of really good technical typists. She really loved it too, and so we
had a fairly good thing. She could read my handwriting. I always composed my manuscripts
by hand. People ask me about this. I might as well digress yet again. I also love keyboard
things. I’ve been playing the piano for ages. When I was in high school I learned how to run a
stenograph machine, like court reporters use. I went to Spencerian College for summer class. I
had the idea I’d get to college and I’m going to take notes with a stenograph machine. I tried it
for two weeks at Case before giving it up. We had been taught shortcuts for how to say, “Dear

Sir,” and “Yours very truly,” but we didn’t have any abbreviations for chemistry and all these
other things.

EF: Yeah, or differential equations.

DK: But anyway, I’m fascinated by keyboards. I also took typing and I was a very good typist. I
could do 70 words a minute or something like this. I got myself a Russian typewriter with a
Cyrillic keyboard so that I could do my Russian homework in undergrad as well. I love
keyboards. But I always compose my manuscripts handwritten. The reason is that I type faster
than I think. There’s a synchronization problem. I can think of ideas at about the rate I can
write them down with a pencil. But with typing I’m going faster, so I have to sync, and my
thoughts have to start up and stop again in a way that involves more of my brain. As a college
student I found I could write a letter home much faster by hand, much faster than I could type
it even though I’m a great typist. The synchronization was slowing down the total thing.
Phyllis and I had this nice, symbiotic relationship. She could read my handwriting, she knew
when to display a formula, make it look beautiful. You almost would think she knew more
mathematics than I did, sometimes, the way she would correct a formula that I had and didn’t
look right to her. She would change it and also get it right. When I’m learning that typesetting
is a problem of zeros and ones --just a matter of programming to get the ink where it’s
supposed to go -- my thought was definitely that this would be something that I would make so
that Phyllis would be able to take my handwritten manuscripts and go from there. I used her as
the model for the language that I was developing, and I also would be able to understand it
myself.

EF: You didn’t have in mind another mathematician…

DK: No.

EF: …doing his own work?

DK: That’s right. I knew that Bell Labs had a system where they had been using secretaries to
typeset. Bell Labs had the EQN system. I learned later that other people had developed
systems where they hire and train secretaries. I used the Bell Lab system, which I knew was a
working system, where somebody uses the Greek letter Alpha, they say “A-l-p-h-a.” The guys
in these commercial systems, the letter Alpha, they say, “Oh no, these secretaries can never
learn that. They’re scared by any hint that it’s Greek. They just know that it’s this symbol, and
so they type QA for the letter Alpha, and that gives them job satisfaction because they know
this code that the mathematicians don’t know. My philosophy was, though, that I knew that
Phyllis would like to write “A-l-p-h-a”. What went into the design was her as a model. And
the fact that I knew that the secretaries at Bell Labs had a language that was in existence, that it
was something that secretaries could learn. At that time when I started TeX, some physics
journals were already being typeset with the EQN system from Bell Labs. It looked horrible --
the spacing was just ugly -- but it was the first generation of this. But I knew that they had a
language that the secretaries could learn. All I had to do was tune up the aesthetics of the final

product.

EF: Don, I would like to ask you about the activities going on. You mentioned that TeX took much
longer than you had anticipated. You had anticipated a one-year project. You ended up with a
ten- year project. It kind of carves out a section of your life in which you were being an
interface designer.

You were being a programmer. I use the term “programmer” because you yourself use it in bio
material on the web, that when you were doing TeX you were a programmer. Then there’s all
the other things going on, both with TeX, with fonts, with the rest of your life. Can you tell us
about those three things?

DK: Okay.

EF: A designer story. A programmer story.

DK: A life story. Okay, there are stories. The first part of it, I’m designing a language for my
secretary. This took place in sort of two all-nighters. I made a draft. I sat up at the AI lab one
evening and into the early morning hours, composing what I thought would be the
specifications of a language. I had already been playing around. I looked at my book and I
found excerpts from several dozen pages where I thought it gave all the variety of things I need
in the book. Then I sat down and I thought, well, if I were Phyllis, how would I like to key this
in? What would be a reasonable format that would appeal to Phyllis, and at the same time
something that as a compiler writer I felt that I could translate into the book, because TeX is
another kind of a compiler. Instead of going into machine language, instead, you’re going into
words on a page. That’s a different output language, but it’s analogous in recognizing the
constructs that appear in the source file. So I went through and this day I drafted how I would
typeset those 12 sample segments in a language that I thought Phyllis would understand. I also
mentioned a mini-users manual for teaching this language. I wrote the draft of this one night,
and I showed it to a bunch of people for their comments. Then a few weeks later I went
through the same thing again. Fortunately, the Stanford AI lab, where I did this work, had a
very good backup system. All of the files that were on that computer for more than 20 years,
stored on archival tapes, are now being available through the internet. I found, thanks to
looking at these old so-called dark tapes, I found the drafts that I made of TeX on those days
when I did the design. Since I believe in source documents, as I said, I published those in my
book, “Digital Typography”, so the people could see what the raw thoughts were, and all the
mistakes, the words that were there at the very beginning. Just as an idea of a design process.
Then I showed the second version of this design to two of my graduate students, and I said,
“Okay, implement this, please, this summer. That’s your summer job.” I thought I had
specified a language. I had to go away. I spent several weeks in China during the summer of
1977, and I had various other obligations. I assumed that when I got back from my summer
trips, I would be able to play around with TeX and refine it a little bit. To my amazement, the
students, who were outstanding students, had not competed [it]. They had a system that was
able to do about three lines of TeX. I thought, “My goodness, what’s going on? I thought these

were good students.” Well afterwards I changed my attitude to saying, “Boy, they
accomplished a miracle.” Because going from my specification, which I thought was complete,
they really had an impossible task, and they had succeeded wonderfully with it. These
students, by the way, [were] Michael Plass, who has gone on to be the brains behind almost all
of Xerox’s Docutech software and all kind of things that are inside of typesetting devices now,
and Frank Liang, one of the key people for Microsoft Word. He did important mathematical
things as well as his hyphenation methods which are quite used in all languages now. These
guys were actually doing great work, but I was amazed that they couldn’t do what I thought
was just sort of a routine task. Then I became a programmer in earnest, where I had to do it.
The reason is when you’re doing programming, you have to explain something to a computer,
which is dumb. When you’re writing a document for a human being to understand, the human
being will look at it and nod his head and say, “Yeah, this makes sense.” But then there’s all
kinds of ambiguities and vagueness that you don’t realize until you try to put it into a
computer. Then all of a sudden, almost every five minutes as you’re writing the code, a
question comes up that wasn’t addressed in the specification. “What if this combination
occurs?” It just didn’t occur to the person writing the design specification. When you’re faced
with implementation, a person who has been delegated this job of working from a design
would have to say, “Well hmm, I don’t know what the designer meant by this.” If I hadn’t
been in China they would’ve scheduled an appointment with me and stopped their
programming for a day. Then they would come in at the designated hour and we would talk.
They would take 15 minutes to present to me what the problem was, and then I would think
about it for a while, and then I’d say, “Oh yeah, do this. ” Then they would go home and they
would write code for another five minutes and they’d have to schedule another appointment.
I’m probably exaggerating, but this is why I think Bob Floyd’s Chiron compiler never got
going. Bob worked many years on a beautiful idea for a programming language, where he
designed a language called Chiron, but he never touched the programming himself. I think this
was actually the reason that he had trouble with that project, because it’s so hard to do the
design unless you’re faced with the low-level aspects of it, explaining it to a machine instead
of to another person. Maybe it was Forsythe, I think it was, who said, “People have said
traditionally that you don’t understand something until you’ve taught it in a class. The truth is
you don’t really understand something until you’ve taught it to a computer, until you’ve been
able to program it.” At this level, programming was absolutely important.

EF: Could I stop you just a second? That’s exactly the same methodology that I learned from Herb
Simon and Al Newell at Carnegie, which is, it’s useless to spit out theories of human thinking
unless you can program them. You get every detail. You have to make a decision about every
detail.

 DK: Yeah, and they’re trying to come up with models of the brain and chess players and things
like this. It becomes very clear at this point.

EF: No room for hand waving.

DK: But also in every field. Composing music. I took a class in music theory during my sabbatical

year, my year in Princeton before coming to Stanford. The idea of music theory, you’re
supposed to decide whether or not certain combinations of notes are going to sound good or
not. But if they had presented it as a programming thing -- write a program that decides
whether or not these notes are going to sound good or not -- that would’ve focused the issue,
the attention, so much more sharply. It’s a dream that if I finish my “Art of Computer
Programming,” one of the things I want to do before I die is to spend time programming for
musical composition, and see if I can come up with some good music that is developed with
computer aid. I feel that in order to really understand music, it’s going to help me to be able to
program that. Who knows?

EF: Don, let me go back to the programming stage. I would wander into your office in Jacks
occasionally, and occasionally you would jump up and down and show me something. I
remember one day you were showing me something that had to do with paragraph formatting,
where you had uncovered a link between that and, I think, dynamic programming or some
other kind of mathematical programming. That was a very interesting story, which is told other
places, but maybe you want to use that as an example to illustrate the link between one part of
your life and another.

DK: I’m not sure if I mentioned that. I was telling somebody about that in the last two weeks. I
don’t know if I mentioned it last week.

EF: Well say it again, even if you did.

DK: Okay. I had met Leon Smith at the AI lab.

EF: Oh yeah, I think that was in the previous interview.

DK: Then in my class they said they could do this with the dynamic programming algorithm that I
used for music. It turned out to also work for English texts, and that was a revelation for my
student. But then when I got to actually programming it, I had to also organize it so that I could
handle lots of text. I had to develop a new data structure in order to be able to do the paragraph
coming in text and enter it in an efficient way. I had to introduce some ideas that are called
“glue”, and “penalties”, and figure out how that glue should disappear at boundaries in certain
cases and not in others. All these things would never have occurred to me unless I was writing
the program. Edsger Dijkstra gave this wonderful Turing lecture early in the 70s called “The
Humble Programmer.” One of the points he made early on in his talk was that when they
asked him in Holland what his job title was, he said, “Programmer,” and they said, “No, that’s
not a job title. You can’t do that; programmers are just coders.” They’re people who are
assigned like scribes were in the days when you needed somebody to write a document in the
Middle Ages.

 Dijkstra said he was proud to be a programmer. Unfortunately, he changed his attitude
completely, and I think he wrote his last computer program in the 1980s. At this conference, I
went to in 1967 about simulation language, Chris Strachey was going around asking everybody
at the conference what was the last computer program you wrote. This was 1967. Some of the

people said, “I’ve never written a computer program.” Others would say, “Oh yeah, here’s
what I did last week.” I asked Edsger this question when I visited him in Texas in the 90s and
he said, “Don, I write programs now with pencil and paper, and I execute them in my head.”
He finds that a good enough discipline. I think he was mistaken on that. He taught me a lot of
things, but I really think that if he had continued... One of Dijkstra’s greatest strengths was that
he felt a strong sense of aesthetics, and he didn’t want to compromise his notions of beauty.
They were so intense that when he visited me in the 1960s, I had just come to Stanford. I
remember the conversation we had. It was in the first apartment, our little rented house, before
we had electricity in the house. We were sitting there in the dark, and he was telling me how
he had just learned about the specifications of the IBM System/360, and it made him so ill that
his heart was actually starting to flutter. He intensely disliked things that he didn’t consider
clean to work with. So I can see that he would have distaste for the languages that he had to
work with on real computers. My reaction to that was to design my own language, and then
make Pascal so that it would work well for me in those days. But his response was to do
everything only intellectually. So, programming. I happened to look the other day. I wrote 35
programs in January, and 28 or 29 programs in February. These are small programs, but I have
a compulsion. I love to write programs and put things into it. I think of a question that I want to
answer, or I have part of my book where I want to present something. But I can’t just present it
by reading about it in a book. As I code it, it all becomes clear in my head. It’s just the
discipline. The fact that I have to translate my knowledge of this method into something that
the machine is going to understand just forces me to make that crystal-clear in my head. Then
I can explain it to somebody else infinitely better. The exposition is always better if I’ve
implemented it, even though it’s going to take me more time.

EF: It’s not just the exposition. It’s the understanding. That’s why I don’t do theoretical AI. I just
can’t understand the thing from a theoretical point of view until I experiment with it.

DK: Yeah. That’s absolutely true. I’ve got to get another thought out of my mind though. That is,
early on in the TeX project I also had to do programming of a completely different type. I told
you last week that this was my first real exercise in structured programming, which was one of
Dijkstra’s huge... That’s one of the few breakthroughs in the history of computer science, in a
way. He was actually responsible for maybe two of the ten that I know. So I’m doing
structured programming as I’m writing TeX. I’m trying to do it right, the way I should’ve been
writing programs in the 60s. Then I also got this typesetting machine, which had, inside of it, a
tiny 8080 chip or something. I’m not sure exactly. It was a Zilog, or some very early Intel chip.
Way before the 386s. A little computer with 8-bit registers and a small number of things it
could do. I had to write my own assembly language for this, because the existing software for
writing programs for this little micro thing were so bad. I had to write actually thousands of
lines of code for this, in order to control the typesetting. Inside the machine I had to control a
stepper motor, and I had to accelerate it. Every so often I had to give another [command]
saying, “Okay, now take a step,” and then continue downloading a font from the mainframe. I
had six levels of interrupts in this program. I remember talking to you at this time, saying,
“Ed, I’m programming in assembly language for an 8-bit computer,” and you said “Yeah,

you’ve been doing the same thing and it’s fun again.” You know, you’ll remember. We’ll
undoubtedly talk more about that when I have my turn interviewing you in a week or so. This
is another aspect of programming: that you also feel that you’re in control and that there’s not
a black box separating you. It’s not only the power, but it’s the knowledge of what’s going on;
that nobody’s hiding something. It’s also this aspect of jumping levels of abstraction. In my
opinion, the thing that computer scientists are best at is seeing things at many levels of detail:
high level, intermediate levels, and lowest levels. I know if I’m adding 1 to a certain number,
that this is getting me towards some big goal at the top. People enjoy most the things that
they’re good at. Here’s a case where if you’re working on a machine that has only this 8-bit
capability, but in order to do this you have to go through levels, of not only that machine, but
also to the next level up of the assembler, and then you have a simulator in which you can help
debug your programs, and you have higher level languages that go through, and then you have
the typesetting at the top. There are these six or seven levels all present at the same time. A
computer scientist is in heaven in a situation like this.

EF: Don, to get back, I want to ask you about that as part of the next question. You went back into
programming in a really serious way. It took you, as I said before, ten years, not one year, and
you didn’t quit. As soon as you mastered one part of it, you went into Metafont, which is
another big deal. To what extent were you doing that because you needed to, what I might call
expose yourself to, or upgrade your skills in, the art that had emerged over the decade-and-a-
half since you had done RUNCIBLE? And to what extent did you do it just because you were
driven to be a programmer? You loved programming.

DK: Yeah. I think your hypothesis is good. It didn’t occur to me at the time that I just had to
program in order to be a happy man. Certainly I didn’t find my other roles distasteful, except
for fundraising. I enjoyed every aspect of being a professor except dealing with proposals,
which I did my share of, but that was a necessary evil sort of in my own thinking, I guess. But
the fact that now I’m still compelled to… I wake up in the morning with an idea, and it makes
my day to think of adding a couple of lines to my program. Gives me a real high. It must be
the way poets feel, or musicians and so on, and other people, painters, whatever. Programming
does that for me. It’s certainly true. But the fact that I had to put so much time in it was not
totally that, I’m sure, because it became a responsibility. It wasn’t just for Phyllis and me, as it
turned out. I started working on it at the AI lab, and people were looking at the output coming
out of the machine and they would say, “Hey, Don, how did you do that?” Guy Steele was
visiting from MIT that summer and he said, “Don, I want to port this to take it to MIT.” I
didn’t have two users. First I had 10, and then I had 100, and then I had 1000. Every time it
went to another order of magnitude I had to change the system, because it would almost match
their needs but then they would have very good suggestions as to something it wasn’t covering.
Then when it went to 10,000 and when it went to 100,000, the last stage was 10 years later
when I made it friendly for the other alphabets of the world, where people have accented letters
and Russian letters. I had started out with only 7-bit codes. I had so many international users
by that time, I saw that was a fundamental error. I started out with the idea that nobody would
ever want to use a keyboard that could generate more than about 90 characters. It was going to

be too complicated. But I was wrong. So it [TeX] was a burden as well, in the sense that I
wanted to do a responsible job. I had actually consciously planned an end-game that would
take me four years to finish, and [then] not continue maintaining it and adding on, so that I
could have something where I could say, “And now it’s done and it’s never going to change.” I
believe this is one aspect of software that, not for every system, but for TeX, it was vital that it
became something that wouldn’t be a moving target after while.

EF: The books on TeX were a period. That is, you put a period down and you said, “This is it.”

DK: 1986 was it, in other words. Five volumes were published, “Computers and Typesetting,
Volumes A, B, C, D, and E”, and that was to be the end. Then we had this 1988 and 1989,
changing everything from 7-bit to 8-bit, which was a major rewrite, done with the help of
volunteers all over the world. But I still had to personally do everything myself in order to
make sure that it wasn’t going to diverge.

EF: This was at the same time it was being ported over to personal computers?

DK: It was ported over to personal computers already in 1980. It was ported to 200 different
programming environments -- I’m considering the combination of operating system and
language – by 1981. TeX ’82 was the complete rewrite and incompatible break with TeX ’78.
The original design, TeX ’78, had already been ported to 200 different environments before I
did TeX ’82. We also made sure that this could be ported.

EF: Did you have to design that porting environment?

DK: Yes. We worked on the porting environment. This was the genesis of literate programming.
One of the aspects of literate programming that doesn’t get top billing is the way it helps for
porting a system. It’s called change file mechanism. I have my master files, and nobody is
allowed to touch these. It says at the top of the file, “Do not change this file unless you are
D.E. Knuth.” I don’t know how many D.E. Knuth’s there are in the world, but anyway I get to
change the master file. But change files come along. The change file starts out with a line
saying, “Okay, now go to the first line in the master file that matches this,” and then it quotes
lines from the master file, When it comes to the end, then it says, “Now replace those by these
lines.” This turned out to be a very flexible mechanism. It also had extra features, like you can
include another change file in the midst of one change file. But anyway, there’s the master files
that I write, and you have everybody who’s porting it. You have hundreds of these change
files. Then I make a change to the master file, because I find a bug, or because I have to have a
new feature before TeX is frozen. Still, the change file has very minor corrections in it. The
error checking was sufficiently good that you would usually find that the people who were
porting it to another environment, their ports would automatically work, even though I was
changing the thing and they understood the port. So that mechanism has worked well.

EF: Don, I wanted to, while we’re talking about TeX and this decade, bring in fonts. Font design,
your interest in the art of font design, bringing Chuck Bigelow to Stanford. All of that, and
Metafont as a program, and as a book.

DK: Yeah. Metafont. Wow, there’s so many layers here. I just received in the mail two days ago a
wonderful book by Herman Zapf, who’s about to celebrate his 90th birthday. It tells the story
of his life and everything, and I’m just thinking about it because I met so many wonderful
people. The graphic designers are about the nicest people I’ve ever met in my life, and this
came out of this group. It starts out, actually, very briefly, at Stanford. Stanford has a
wonderful professor, Matt Kahn, who taught a course in basic design. Jill and I took his class –
audited his class -- in 1976, I think it was. I got to rub shoulders with artists during this time.
He also gave a lot of insight into the way artists do their wonderful things. Then a few years
later when I’m working on TeX, of course aesthetics is very important to me. That’s why I
didn’t like the Bell Lab system, otherwise I would’ve adopted the Bell Lab system. I had to
have something that looked beautiful to me. Stanford has a wonderful collection of fine
printing, called the Gunst Collection. I went through and I absorbed the writings of type
designers through the centuries, and studied, and started to learn what makes good quality
different from ordinary quality in published books. That was during the earliest time working
in TeX. Before the summer of ’77, I could be mostly found, like during May of that year just
before my sabbatical, I could probably mostly be found in the Stanford Library reading about
the history of letter forms. Before I went to China I had drafted the letters for A to Z. I’m not
sure if I had gotten into all the letters. I think I had probably 26 lower case and 26 upper case
letters by the time I left for China. But I had to do fonts at the same time as TeX. It wasn’t
something [where] I can do TeX and then I can do fonts. It’s a chicken and egg problem. You
can’t do typesetting unless you have the fonts to work with. Structured programming gave me
a different feeling from programming the old way. A feeling of confidence that I didn’t have to
debug something immediately as I wrote it. Even more important, I didn’t have to mock-up the
unwritten parts of the program. I didn’t have to do any fast prototyping on something like this,
because when you use structured programming methodology, you have more confidence that
it’s going to be right, that you don’t have to try it out first. In fact, I wrote all of the code for
TeX over a period of seven months, before I even typed it into a computer. It wasn’t until
March of 1978 when I spent three weeks debugging everything I had written up to that time.
Certainly you can imagine how I’m feeling in October, November, saying, “Hmm. I wonder if
this is really going to typeset a paragraph, if these data structures I have for dynamic
programming are really going to work.” Maybe I’m a little curious about it, but structured
programming still was strong enough that I thought, “No, no. If I’m going to try to minimize
my total time, then why should I have to first debug my prototype and then debug the real
thing? Why don’t I just do all the debugging once and save total time?” The same with fonts. I
had to have fonts. I couldn’t debug TeX until I had the fonts. So it’s all mixed up, but working
on one for a month and then going to the other for a month and coming back. I thought fonts
were going to be easy. I had seen Butler Lampson playing around with fonts at Xerox PARC.
He was sitting at a terminal and he had a big letter “B.” I can sort of visualize it now. He was
drawing splines around the edge. In my art class project I had done a project for Matt Kahn
[which] taught me about splines, so I knew how to program splines. I thought, okay, I’ll get the
letters that are used in the old edition of “The Art of Computer Programming”, and I’ll do like
Butler did, and I’ll make my font. I was going to go over to Xerox PARC and work with their

equipment. They said, “Fine. Sure, Don. We’ll give you an office over here. Of course, any
fonts you design here become Xerox property. You won’t mind that?” I said, “What? All I’m
going to come out with [are] my measurements, a bunch of numbers. How can you own those
numbers? These are just integers. Numbers belong to God.” Well, this is a debatable point. But
they said anything I do there would belong to them. So I worked instead at the Stanford AI lab,
where we didn’t have anywhere near as good of precision cameras. We had a TV camera and a
great amount of distortion. If you turned the light slightly up just a tiny bit, the width of the
letters on the screen would grow by 25%. It was impossible to do any quality work through
that. I had to learn all kind of tricks for getting around it. It became much more difficult to do
fonts than I had expected. You were saying the other day that a story has to have moments of
tragedy as well as success. One of the greatest disappointments in my whole life was the day
that I received in the mail the new edition of volume 2 of “The Art of Computer
Programming,” which was typeset with my fonts and which was supposedly to be the
crowning moment of my life when I had succeeded with the TeX project. I think it was 1981,
and I had gotten the best typesetting equipment, and I had written a program for the 8-bit
microprocessor inside, and it had 5,000 dots-per-inch, and all of the proofs that I had coming
out looked good on this machine. I went over to Addison-Wesley and they typeset it, and it
came in a book. There was the book, and it was in the familiar beige color covers. I opened the
book up and I’m thinking oh, this is going to be a nice moment. [But] this doesn’t look the
same!

 EF: You sent them film, right?

DK: I sent them film. It doesn’t look the same as my other books. I had volume 2, first edition. I
had volume 2, second edition. They were supposed to look the same. Everything I had known
up to that point was that they would look the same. All the measurements seemed to agree. But
a lot of distortion goes on, and our optic nerves aren’t linear. All kinds of things happening. I
wrote it up once, when I say I burned with disappointment. I mean, I really felt a hot flash
where I “Ohhhhh!”

EF: Yeah. Probably seething anger too.

DK: I don’t know. So, I mean, I—

EF: You were saying that you put so much effort into this and it wasn’t beautiful.

DK: It wasn’t that bad. Some people didn’t notice any difference at all, but the worst was the
numerals. The numbers 1, 2, 3, 4, 5 are really in a rather different style from letters, and
they’re very tricky. I didn’t realize that when browsing a book our eyes jump and focus on
different parts, and one of the things we focus on most, often when we’re using a book, is the
page numbers. And the 2 was really ugly. And the 6 -- there is something about the 6 that it’s
just not a 6. And the 5‘s! Anyway, I got to the point where I was so upset. Some of California
highway signs -- the speed limit signs for 50 miles an hour, or 25 miles an hour -- the 5 is
really ugly. It looks like the 5 that I used to have. I couldn’t live in Santa Rosa because they

have lousy 5’s on their speed limit signs in Santa Rosa. It just reminds me of this awful time.
There will be a time when I would be looking at all of the 2’s that I could see as I’m riding a
bus, or something like this, and how am I going to get this 2 to be right, because the numbers
were the worst of all. The letters were okay, but I’d seen the numbers, and I can’t read my
book without seeing these numbers. I’m looking up a page and I look in the index. Oh, yeah, I
see, page 413. Then I have to read all these numbers in order to get to page 413.

EF: How did this get by your eyes?

DK: Before.

EF: How come it didn’t get caught in the process?

 DK: You see, it’s the context. Having it on a film… Ok, first of all, we’re working with the
Xerox Graphics Printer, which has a very low resolution. Everything has jaggies -- jagged
edges -- in that machine. I knew about this even before I started to go into typography. We had
the Xerox Graphics Printer and we were saying, “Oh, this is interesting, but it’s not a book.”
Then I had the nice results from Pat Winston’s book that looked like a book. That was
professionally designed type; it wasn’t done by a computer programmer. But now I was trying
to match exactly the type that we had in the other [version]. I would debug my whole book
looking at Xerox XGP proofs. Then I would go to my high-res machine, this expensive
typesetter in the basement, and [on] that machine it was certainly crisp, and I didn’t see any
jaggies in those. I had no indication that when this would actually then go to be printed on
paper, the ink gets a little distorted by the printing process, and even more so bound in a place
that looked exactly… It’s the context. It had to look right, and it didn’t at that time. I’m happy
to say that I open my books now and I like what I see.

EF: You’re at the bottom of this trough—

DK: Even though they don’t match exactly 1968, the way they differ are pleasing to me. But I had
to… So then I went to all the best type designers in the world. I had learned some of their
names, and I was able to invite them to participate in my research project, and I got to meet
[them]. I could see, for example, that Herman Zapf, from some of the things he had written, he
seemed to be a very open- minded guy. So I wrote him a letter introducing myself and saying,
“Would you be interested in spending two weeks at Stanford?” And boy! He’s the absolute
best in the world. In my apprenticeship he’s one of my great teachers. As you mentioned
Chuck Bigelow, Chuck was the dean of typography in America. I worked out to get some
donations that we would be able to hire Chuck and have a joint appointment with the art
department. I was glad to find out that after we had gone through the process of committees
and getting the appointments approved by two departments and everything, the week after he
had accepted our offer he received a MacArthur Prize Fellowship, which certainly enhanced
my credibility too with the art department. This was a big, new thing for them; we had never
had a joint thing with the art department before. I brought Matthew Carter, who is considered
definitely the leading type designer in America. There was a great article about him in The

New Yorker last year. He was out here for a quarter. Many other visitors and industry leaders
from around the world helped me at the time. Finally by 1986 I was ready. I had type that I
could be happy with. They said to me, “Don, that’s the normal five years’ apprentice as a type
designer. That’s the way it goes.” Originally, I thought it was just going to be a matter of
making a few measurements and taking a few numbers, and that would be it.

EF: That was the TeX story, the METAFONT story. Anything else going on during this time, [in]
the other parts of your life?

DK: Okay. I had to work so intensively on this software that I could not keep up my normal
teaching load at Stanford. I think three or four quarters… I’m not sure. Were you chair?

EF: I was chair ’76 through ’81.

 DK: ’81, yeah. So I had to approach you and say, “Can you give me a leave of absence this
quarter because I’m doing software?” Also then Nils [Nilsson] probably. Do you know who?
No?

EF: After me I think Gene Golub may have taken over.

DK: Gene. Okay. Anyway, I missed three or four quarters during a period of four years, because I
found that writing software was much more difficult than anything else I had done in my life,
in the following sense. I had to keep so many things in my head at once. I couldn’t just put
them down and start something else. It really took over my life during this period. I used to
sort of think there were different kind of tasks: writing a paper, writing a book, teaching a
class, things like that. I could juggle all of those simultaneously. But software was an order of
magnitude harder. I couldn’t do that and still teach a good Stanford class. Of course, I’m
advising my grad students through all this period, and they’re doing great theses related to
typography. Mostly, not always. But the other parts of my life were largely on hold. That
includes The Art of Computer Programming. Except volume 2 was my big project, to get the
new edition of volume 2 done with TeX. In 1980 I spent several months just doing pure…
There were new developments in the algorithms that belong in volume 2, and I wrote a lot of
new material for volume 2 during this period. But then in order to get TeX and METAFONT
completely finished, that was the focus. At Stanford we had a unique class taught in the spring
of ’84 when the new version of METAFONT was being done. I co-taught it with Chuck
Bigelow and Richard Southall. Richard is not a type designer but an expert in the interface
between the designer and the actual final product. He’s a talented designer but he’s not one of
the leading designers. His main expertise is actually knowing what distortions you have to
make in order to get it to look right on the page. The three of us co-taught the class. The class
met three days a week, once by Chuck, once by Richard and once by me. The students in the
class are learning to design fonts at the same time. It was a great quarter doing this class, and it
was all recorded on videotape. Unfortunately the tapes were all erased, so we just have our
memories of this class. My life was pretty much typography. When it got to The Art of
Computer Programming, every three months I would take a look at the journals that had come

in for those three months and I would scan the titles. For each article I would say, “Oh, this
belongs in volume 4, in a certain part.” I kept an index of them for a while. I started throwing
the preprints that I would receive in the mail, I started first putting them into a box. All my
preprints had been organized well for volume 4, into 32 compartments. But then they were
starting to overflow, so then I had X1, which just had overflow from all the compartments, and
X2 and X3. I got up to X15 of these preprints. Then I gave up on that and I started putting
them into a big box in a room in my house. And then the box overflowed and there was a big
pile on the floor.

EF: Yeah. I remember visiting you in your study when it was just a chaos of piles.

DK: Yeah. So in 1993, I think it was, I finally attacked the pile. I went through and I had
accumulated, I think it was, 14 linear feet of material that I had just been saying “someday get
to this for volume 4.” I think it took me a year to go through all of that and organize it and get
ready to write the real volume 4 after all this time. So I put that on hold. Then before 1994 I
had to get ready to, well, I’m retiring. We’ll probably get into my third Stanford period. But
typography was it for the early part of the ‘80s. Then I started doing a lot of mathematical
research in the late part of the ‘80s, analysis of algorithms, my real life’s work.

EF: I’d like to do that, to move on to the third period. You’ve already mentioned one of them, the
retirement issue, and let’s talk about that. The second one you mentioned quite early on, which
is the birth in your mind of literate programming, and that’s another major development.
Before I quit my little monologue here I also would like to talk about random graphs, because I
think that’s a stunning story that needs to be told. Let’s talk about either the retirement or
literate programming.

DK: I’m glad you brought up literate programming, because it was in my mind the greatest spinoff
of the TeX project. I’m not the best person to judge, but in some ways, certainly for my own
life, it was the main plus I got out of the TeX project was that I learned a new way to program.
I love programming, but I really love literate programming. The idea of literate programming
is that I’m talking to, I’m writing a program for, a human being to read rather than a computer
to read. It’s still a program and it’s still doing the stuff, but I’m a teacher to a person. I’m
addressing my program to a thinking being, but I’m also being exact enough so that a
computer can understand it as well. And that made me think. I’m not sure if I mentioned last
week, but I think I did mention last week, that the genesis of literate programming was that
Tony Hoare was interested in publishing source code for programs. This was a challenge, to
find a way to do this, and literate programming was my answer to this question. That is, if I
had to take a large program like TeX or METAFONT, fairly large, it’s 5 or 600 pages of a
book--how would you do that? The answer was to present it as sort of a hypertext, where you
have a lot of simple things connected in simple ways in order to understand the whole. Once I
realized that this was a good way to write programs, then I had this strong urge to go through
and take every program I’d ever written in my life and make it literate. It’s so much better than
the next best way, I can’t imagine trying to write a program any other way. On the other hand,
the next best way is good enough that people can write lots and lots of very great programs

without using literate programming. So it’s not essential that they do. But I do have the gut
feeling that if some company would start using literate programming for all of its software that
I would be much more inclined to buy that software than any other.

EF: Just a couple of things about that that you have mentioned to me in the past. One is your
feeling that programs can be beautiful, and therefore they ought to be read like poetry. The
other one is a heuristic that you told me about, which is if you want to get across an idea, you
got to present it two ways: a kind of intuitive way, and a formal way, and that fits in with
literate programming.

DK: Right.

EF: Do you want to comment on those?

DK: Yeah. That’s the key idea that I realized as I’m writing The Art of Computer Programming,
the textbook. That the key to good exposition is to say everything twice, or three times, where I
say something informally and formally. The reader gets to lodge it in his brain in two different
ways, and they reinforce each other. All the time I’m giving in my textbooks I’m saying not
only that I’m.. Well, let’s see. I’m giving a formula, but I’m also interpreting the formula as to
what it’s good for. I’m giving a definition, and immediately I apply the definition to a simple
case, so that the person learns not only the output of the definition -- what it means -- but also
to internalize, using it once in your head. Describing a computer program, it’s natural to say
everything in the program twice. You say it in English, what the goals of this part of the
program are, but then you say in your computer language -- in the formal language, whatever
language you’re using, if it’s LISP or Pascal or Fortran or whatever, C, Java -- you give it in
the computer language. You alternate between the informal and the formal. Literate
programming enforces this idea. It has very interesting effects. I find that, for example, writing
a system program, I did examples with literate programming where I took device drivers that I
received from Sun Microsystems. They had device drivers for one of my printers, and I
rewrote the device driver so that I could combine my laser printer with a previewer that would
get exactly the same raster image. I took this industrial strength software and I redid it as a
literate program. I found out that the literate version was actually a lot better in several other
ways that were completely unexpected to me, because it was more robust. When you’re
writing a subroutine in the normal way, a good system program, a subroutine, is supposed to
check that its parameters make sense, or else it’s going to crash the machine. If they don’t
make sense it tries to do a reasonable error recovery from the bad data. If you’re writing the
subroutine in the ordinary way, just start the subroutine, and then all the code. Then at the end,
if you do a really good job of this testing and error recovery, it turns out that your subroutine
ends up having 30 lines of code for error recovery and checking, and five lines of code for
what the real purpose of the subroutine is. It doesn’t look right to you. You’re looking at the
subroutine and it looks the purpose of the subroutine is to write certain error messages out, or
something like this. Since it doesn’t quite look right, a programmer, as he’s writing it, is
suddenly unconsciously encouraged to minimize the amount of error checking that’s going on,
and get it done in some elegant fashion so that you can see what the real purpose of the

subroutine is in these five lines. Okay. But now with literate programming, you start out, you
write the subroutine, and you put a line in there to say, “Check for errors,” and then you do
your five lines. The subroutine looks good. Now you turn the page. On the next page it says,
“Check for errors.” Now you’re encouraged. As you’re writing the next page, it looks really
right to do a good checking for errors. This kind of thing happened over and over again when I
was looking at the industrial software. This is part of what I meant by some of the effects of it.
But the main point of being able to combine the informal and the formal means that a human
being can understand the code much better than just looking at one or the other, or just looking
at an ordinary program with sprinkled comments. It’s so much easier to maintain the program.
In the comments you also explain what doesn’t work, or any subtleties. Or you can say, “Now
note the following. Here is the tricky part in line 5, and it works because of this.” You can
explain all of the things that a maintainer needs to know. I’m the maintainer too, but after a
year I’ve forgotten totally what I was thinking when I wrote the program. All this goes in as
part of the literate program, and makes the program easier to debug, easier to maintain, and
better in quality. It does better error messages and things like that, because of the other effects.
That’s why I’m so convinced that literate programming is a great spinoff of the TeX project.

EF: Just one other comment. As you describe this, it’s the kind of programming methodology you
wish were being used on, let’s say, the complex system that controls an aircraft. But Boeing
isn’t using it.

DK: Yeah. Well, some companies do, but the small ones. Hewlett-Packard had a group in Boise
that was sold on it for a while. I keep getting… I got a letter from Korea not so long ago. The
guy says he thinks it’s wonderful; he just translated the CWEB manual into Korean. A lot of
people like it, but it doesn’t take over. It doesn’t get to a critical mass. I think the reason is that
a lot of people don’t enjoy writing the English parts. A lot of good programmers don’t enjoy
writing the English parts. Two percent of the world’s population is born to be programmers. I
don’t know what percent is born to be writers, but you have to be in the intersection in order to
be really happy with literate programming. I tried it with Stanford students. I had seven
undergraduates. We did a project leading to the Stanford GraphBase. Six of the seven did very
well with it, and the seventh one hated it.

EF: Don, I want to get on to other topics, but you mentioned GWEB. Can you talk about WEB and
GWEB, just because we’re trying to be complete?

DK: Yeah. It’s CWEB. The original WEB language was invented before the [world wide] web of
the internet, but it was the only pronounceable three-letter acronym that hadn’t been used at the
time. It described nicely the hypertext idea, which now is why we often refer to the internet as
a web too. CWEB is the version that Silvio Levy ported from the original Pascal. English and
Pascal was WEB. English and C is CWEB. Now it works also with C++. Then there’s FWEB
for Fortran, and there’s noweb that works with any language. There’s all kinds of spinoffs.
There’s the one for Lisp. People have written books where they have their own versions of
CWEB too. I got this wonderful book from Germany a year ago that goes through the entire
MP3 standard. The book is not only a textbook that you can use in an undergraduate course,

but it’s also a program that will read an MP3 file. The book itself will tell exactly what’s in the
MP3 file, including its header and its redundancy check mechanism, plus all the ways to play
the audio, and algorithms for synthesizing music. All of it a part of a textbook, all part of a
literate program. In other words, I see the idea isn’t dying. But it’s just not taking over.

EF: We’ve been talking about, as we’ve been moving toward the third Stanford period which
includes the work on literate programming even though that originated earlier. There was
another event that you told me about which you described as probably your best contribution
to mathematics, the subject of random graphs. It involved a discovery story which I think is
very interesting. If you could sort of wander us through random graphs and what this discovery
was.

DK: Well, let me try to set the scene and connect it to the past a little bit. We finished the TeX
project. The climax of that was 1986, although I did have to come back into it later on to make
it more world friendly. But after 1986, that was a sabbatical year for me, so it was also a time
when I spent the whole year in Boston. It was the year I gave to my wife as her sabbatical. It
was 25 years of marriage; I thought I could help her for one year, and she’s been helping me
for all the rest. That was a break. I came back to Stanford after that, and I plunged into what I
consider my main life’s work is analysis of algorithms. That’s a very mathematical thing, and
so instead of having font design visitors to my project, I had great algorithmic analysts to my
project, especially Philippe Flajolet from Paris. I started working on some powerful
mathematical approaches to analysis of algorithms that were unheard of in the ‘60s when I
started the field. We were excited about these developments and able to analyze a lot more
algorithms that previously were untouchable. Also other visitors, like Boris Pittel and so on. I
had good research funding to do work on analysis of algorithms. In fact I brought in the TeX
project originally as just a minor thing on my contract. ”Say, by the way, we’re going to write
these technical papers and we need a publishing method to present our work, so I’ll spend a
little time on typography.” That lasted only a year, and then I got special funding for working
on TeX. But throughout that time I also was doing a little bit of support, with graduate students
and visitors, doing analysis of algorithms. This became a major thing again in the late ‘80s. I
found on the web one of my progress reports from 1987 listing ten accomplishments of that
year. I had to say that I don’t know if any other year was as fruitful as that year, as far as my
project was concerned anyway. It was certainly in full swing again finally after, from 1977 to
1986, the work on typography. So here I am in math mode, and thriving on the beauties of this
subject.

 The main glory of it then occurred after the new ideas had started to gel. We started to see the
deeper implications. As you learn the new techniques you apply it to new problems that were
previously unreachable. One of the problems that was out there that was fascinating is the
study of random graphs. Graphs are one of the main focuses of volume 4, all the combinatorial
algorithms, because they’re ubiquitous in applications. A lot of times in order to understand
what an algorithm is doing, you see what would it do if I applied it to random data of various
kinds. Yesterday at our computer forum Pat Hanrahan was telling me how many people he

knows that are working with random graphs to study the internet, and so on. One of the
simplest models of random graphs is one that also the physicists had been interested in for
many years. It connects to so-called Bose-Einstein statistics, they tell me, although I don’t
really understand that much about that part of physics. This model is very simple. We start out
with N points that are totally disconnected from each other. These points don’t exist in three-
dimensional space. They exist just as N objects in any number of dimensions. Initially there’s
no connection at all between any objects. But you can imagine that somebody draws two
random objects, totally at random. Close your eyes, find one, and each one with equal
probability, 1/N. Then find another one and then put a connection between those two. “Zap.”
Those two are now joined. Okay. Now we have N-2 objects that are still independent, but two
of them are connected together. Do it again, and maybe you’ll connect two others. After you
do it a few more times you might find that these two are together, and these two are together,
but then you will hook them together and we’ll get four. Or we might have two that get a third;
a guy goes with them. Eventually we build up trees of things, meaning that they’re hooked
together but they don’t have cycles. There’s no loops. Everything in a tree is connected to
everything else in the tree, but there’s only one way to get from each one to each other one.
There’s no loops. But we keep on adding. This random process keeps going on, adding more
and more connections, one at a time. Eventually cycles occur. If we keep on going on and on
and on and on, eventually everything is going to be connected to everything else directly. This
is called the evolution of random graphs. We can ask, at any point in time, what does the
random graph look like after we’ve added M connections to these N groups? What does it look
like? Paul Erdos and Alfred Renyi had proved in 1960 that an amazing thing happens as we
add these connections. When M gets to a value which is approximately one half of N times the
natural log of N, all of a sudden a “big bang” occurs, where comparatively little connection
was true before the big bang, compared to a lot after the big bang. The statistics are something
like this. If we say that M, the number of edges, is equal to lambda over 2 times N. If M is N
over 2, if we went ahead, added half as many edges as there are points, then lambda is 1. If
lambda is 10, then I’ve added 5N point connections. The thing is, if lambda is less than 1… So
we consider a large value of N, and we have fewer than one half… Sorry. If lambda is less
than log N… No. Ok. Change my definition so the number of edges is equal to lambda times
natural log N times N over 2. If lambda is less than 1, then almost surely the graph consists of
only trees, and the largest tree is of size something like the logarithm of N. It’s almost totally
dispersed. If lambda is equal to 1, almost surely there is a component of size N to the two
thirds power; if N is a million, a component of size approximately 10,000. It’s N to the two
thirds power. It goes from log N size trees to connect the part that’s big, that has N to the two
thirds. If lambda is greater than 1, it’s proportional to N, not N to the two thirds. So there is
this jump between a very small number and no cycles. If lambda is 1 minus, if lambda is
0.999999, you still only get log N. If lambda is 1.000001, you get N. There is this bang that’s
occurring, and the question…

EF: By “bang” you mean a discontinuity.

DK: Discontinuity, a double jump. People who have studied the Erdos and Renyi, and physicists,

could study it from the point of view of starting from zero and going up to lambda equals 1,
and then their equations would blow up at lambda equals 1. Or they could study the later
stages, larger lambda, and lambda gets down towards 1, and there the equations blow up.
Okay? Now a Russian man in St. Petersburg who had noticed to his surprise that actually there
was some similarity between the blow-ups from the top and the blow-ups from the bottom.
What we proposed to study was what happens in the middle, and center on the middle, if
possible. I guess we’ll continue the story later.

EF: We’ll continue that story.

EF: Don, we’re at the discontinuity point, and you’re about to explore both sides of that point, and
the story’s going to get really interesting here.

DK: Well, I hope so, but at about this time, Dick Karp at Berkeley was also interested in the
evolution of random graphs, and this explosion phenomena. It relates in a vague way to
computer algorithms, because if we have data that has a lot of connections in it, then we would
want to use a different kind of data structure to represent in the computer, and certain strategies
would work a lot better. Dick Karp had shown that, for example, if we want to take the
transitive closure of a binary relation, you use a different method, or if you want to update the
consequences of adding a new thing, depending on how big the graph is, you want to choose a
different strategy. So this becomes a problem also in an analysis of algorithm as well as in
physics. He had a couple of his graduate students do a simulation and try to grow a lot of
random graphs and see what happened. The word we heard from this simulation -- it actually
turned out we misunderstood it -- but what it seemed to imply from what we heard from what
the Berkeley students had done was the following: as the graph is growing and getting more
and more connections, the graph first gets to a point where it has one cycle. It’s not just trees,
but there’s also one of the components has an extra edge in it, more than needed to connect
things together. Not only are the things connected, but also there’s another edge making a
cycle. Eventually there will be two cycles, and three cycles, and things like this, and there’ll be
more things happening. What we thought the Berkeley group had discovered was that there
almost never was a case where two of the connected components of the graph would have
cycles. In other words, as we’re adding edges, components merged together; things that used to
be apart become one. You might think that actually in a graph if we have a left component and
a right component, the left component might get a cycle and the right component might get a
cycle, and then they might merge later. But in the Berkeley experiments, it seemed, this almost
never happened. Instead, whichever component first got a cycle, it was the only one that had
cycles later on. Others would merge into it, but none of these other components would grow
their own cycles first. They weren’t big enough to have cycles. We thought, well, if this is true,
this would also have implications for data structures and algorithms. We could design our
algorithms so that they could have one place for the cycle guy, and one place for the other
ones. We could have our data structure and say, well, here’s where the cycles are, and here’s
where the trees are, and then we could do faster updating. So we set out, really, not originally
to understand everything about the way the graph goes through this critical point. Our original

goal was to just try to prove what we thought the Berkeley group had found empirically, this
phenomenon that there’s sort of almost always only one main component, or one main
component that has cycled.

 EF: Don, can I interrupt you just a second to ask a question? What puzzles me, and puzzles maybe
the audience, which is how often do analysts, mathematical analysts, do empirical experiments
to discover things? Is that a usual thing, or was it special in this case?

DK: It’s a fast-growing area in mathematics. The Journal of Experimental Mathematics was
founded by Sylvio Levy less than ten years ago. He was my co-author with CWEB, but he’s
very broad. It’s because computers are now there, so we can now do empirical studies with
mathematics. It’s not too common. My professor, Marshall Hall, was sort of famous for his
observation with combinatorial things, that at the time he best expressed the wisdom of the
1960s of saying that when you’re doing mathematics it’s nice to do a bunch of experiments
with pencil and paper. If some problem has a parameter N associated with it, you can usually
go up to some value of N, like N=10 or something, by hand. Then with the computer you can
go on with N=11. Combinatorial problems tend to grow faster, to the point where the
computer can go beyond the hand thing. But then you can’t go to N=12, because that’s already
too much, because the problem is growing so much. So he says computers were good for going
one case beyond what you could do by hand. But now computers are better by orders of
magnitude than they were there, and also the tools that we have now for examining
mathematical things are much better, the software that we have.

EF: If this journal is only ten years old, this work that you were doing around 1990 must’ve been
very much an early kind of a pioneering thing.

DK: Well, it was, actually. I guess there was another story associated with that, and that is I did
empirical studies on the first cycle that occurs with a random graph. There was the paper that I
wrote just previous to the one, the work I did with Philippe Flajolet. We first developed the
theory, and then we wanted to have a section at the end of the paper that validated [it]
experimentally, so we could see how big the graph had to be before the asymptotics would
kick in. A lot of graph problems actually behave differently when the size is small. Our
theorems we knew were true when N gets up to larger than the size of the universe, but how
did we actually know, if N is a million, is our theory correct? So I ran experiments, sort of as a
last phase of writing the previous paper, in order to test the thing in practice for small values,
since our mathematics was entirely concentrated on the case where N is getting very large, the
size of the graph is getting very large. I ran the program over Christmas vacation. I think I let it
run a little longer than I intended, I think because of timesharing, nobody else was using it at
the Christmas vacation. I didn’t realize, but a week later I got a bill from Betty Scott for
$60,000 of computer time, which was way more than I had in my budget of my research grant.
I refused to pay it, basically. I said, “I’m sorry, I have to declare bankruptcy.” The worst part
of the story is that I found out, 15 years later, that I had a bug in my program and all the
answers were wrong, all the $60,000 of calculation. What we had to report in our paper was
that actually our theory didn’t seem to be very relevant for the small values of N. And

Professor, our stat professor -- oh, what’s his name? I see him in front of me, but I don’t know
-- he was looking at our data and he figured out another algorithm by which he could calculate
things by hand. He knew that our answers were wrong. Sure enough, all this money that I
wasted on this empirical calculation, no wonder it didn’t agree with our theory, because my
program was, in fact, wrong. In the reprint of that paper on the first cycles, which came out in
my Collected Papers on Discrete Mathematics, I think it is -- I don’t remember which of mine -
- I recomputed this table with a correct program. Of course, it only took five minutes on a
modern computer. But with the SAIL [Stanford Artificial Intelligence Lab] computer we got a
whopping bill. So it wasn’t very usual to do empirical calculations at that time, and it was at
Berkeley that the guys do.

EF: Let’s go back to Berkeley. You had interpreted, but probably misinterpreted, the Berkeley
numbers.

DK: That’s right. The Berkeley numbers were telling us there might be this giant component
phenomenon, that the seed is planted very early, and then it stays with the thing. That was our
original motivation for studying the… What we finally found out was a good explanation of
the Big Bang, but our motivation -- we didn’t start out in saying, “I’m going to solve this
problem.” That would’ve been a hopeless problem. That would’ve been too much, even for an
optimist like me, to say he was going to tackle that problem. It just turned out that we stumbled
on the answer. But in our course of looking at it, we did find a way to slow down the Big
Bang, and that’s not too hard to understand. Let’s imagine again that we’re watching this graph
evolve. Every graph as it evolves finally gets to a point that a cycle appears in one component.
Okay, we have one component containing a cycle. Now then it comes to a point where there
are two cycles in the whole graph. There are two possibilities. Either the two cycles are in the
same component, or one cycle in this component, one cycle in another one. So there’s a fork in
the road. It goes one direction or the other. Then when the third cycle appears, we have three
possibilities. We could have all three in one component, or we could have one and two, or we
could have one, one and one. And so on. You could draw an abbreviated history if you just
look at which components have cycles. There’s a branching diagram that every evolving graph
goes through some path in this diagram. The Berkeley experiment, as we understood it, was
that almost always we were on the upper line of this path. Almost always there’s only one
component that contains cycles. These other possibilities are there, but rare. We developed
tools of complex analysis that I had mostly learned from Philippe Flajolet. It got to the point
where I could prove that it wasn’t almost always happening on the top line, because at the very
first branch, if I’m not mistaken, the odds were 72 to 5 that it would take the first branch, but 5
cases out of 77, you’d take the bottom branch. It’s not going to zero, but that most of the time
it takes the top branch. But then maybe those two will join together and will get up to the top
branch again. We started to have more mathematics so we could find the first branch, in the
two cases. A few more days later, we could extend that. We could say, “Oh, what happens
when the two go into three, and three go into four?” We were getting peculiar numbers, but we
could calculate these probabilities by a long sequence of steps; a lot of calculus, a lot of
Mathematica -- or Macsyma, I guess it was at that time -- using the symbolic algebra systems

to grind out these strange probabilities. The truth actually turned out that the Berkeley
experiments had sampled the graph. Say you have a million nodes. They would sample it after
you had a thousand edges, and then you print out what’s the state then. What about 1,100
edges, 1,200 edges? I’m sorry, the critical point occurs at 1/2 N log N. They would sample it at
periodic times, but they wouldn’t sample it [exactly] at the state where you get the first cycle,
the second cycle, as in our mathematics. What we were doing is we were seeing the graph at a
certain number of seconds at time. The truth is that these deviations from the top line disappear
very quickly. There’ll be a brief instant of time where there’s two [cycles], where you’re not
on the top line, but then it jumps back up to the top line again. If you’re only sampling the
graph at intervals of time, you almost never see the case where you’re not on the top line.
That’s why we misunderstood what we thought the Berkeley experiments contained. We
actually were able to prove sort of a climactic theorem, to get an exact probability that it stays
on the top line throughout and never ever has more than one cycle. The number was something
like 5π/12. Amazing. No, it’s got to be less than one, but it equals a small rational multiple of
π. That was the exact probability of staying on the top line. It’s kind of amazing that the
number π would occur in this connection. So we had these new mathematical tools. What it
finally gave us was a way to look at the Big Bang from the center of the process, and none of
our equations blow up. We’re able to slow down the Big Bang and watching it happen, by
means of this new scale of measurement saying, “Look at it after there’s a certain number of
cycles in the graph.”

 EF: Don, tell me about the words, “stumble upon.”

DK: Stumble upon, yeah. EF: “We stumbled upon.” DK: Right, yeah.

EF: What happened?

DK: I had these numbers now. They were numbers like 5/77. I wrote these numbers down, and
they just looked like really crazy numbers. Then one day I decided to take the series, it’s a
power series, X + (5/77) X2, or something like this. You have a sequence of powers of X with
weird rational numbers attached to each power. I realized that the mathematics that we were
developing actually would simplify if we weren’t using those numbers, but instead forming the
exponential of these power series. You take ef(X) instead of f(X). I used Macsyma to calculate
ef(X), and it has rational coefficients, too. But one of those rational coefficients was something
like 23023. Or 17017, or something. It wasn’t just a random number, You play with numbers
[and] you know that 23023 is 23 x 7 x 11 x 13, because 7 x 11 x 13 is 1,001, and that happens
to involve a lot of small prime numbers. So here’s this number with a lot of small prime factors
appearing. If we didn’t take the exponential, the numbers just looked crazy; they didn’t have
small prime factors, they didn’t have any nice mathematical redeeming features. But after I
took the exponential, all of a sudden the numbers that I was looking at looked like old friends.
They were something that, you know, there had to be a reason for it. God didn’t want these
numbers just to be there. There had to be some mathematical reason. You could say that’s
“stumbling on” something. An hour later I could see the pattern for all of the numbers, because
now it was all small prime factors and I could guess what the next one in the series is. Before

having this combination, it was impossible. The funny story is that I made this discovery in the
middle of the night, about 4:00. I could explain why it’s 5/77ths and everything, and I could
draw the diagram of the transition of every graph as it goes through the beginning of the Big
Bang. Bill Gates was visiting Stanford the next day, and they were trying to impress him so
that he would donate some money to build a new house for the computer science department.
They asked me to meet with him in the morning. I’m not sure if we had ever met before. I
know he says now that he had studied my books rather hard when he was at Harvard. I was all
filled with the enthusiasm about having seen a pattern in these numbers. I drew on the
blackboard the branching structure of the first moments of the Big Bang, and I put my rational
numbers on there, and I put my formula involving 6N factorial, or anyway all the pattern that I
had noticed. Later on, Carolyn Tajnai, who was walking him around between the buildings,
said to me, “Don, can you recreate for me what you put on the blackboard that day? Because
Bill was really enthusiastic about this?” The next day he wrote a check to Stanford, for I don’t
know, $10 million, or something like this. I always use this story if somebody says, “Who says
theoretical computer science has no value?”

EF: Great story. Here’s a question which kind of wraps up the Stanford… Well, you were going to
talk about your retirement, and then I was going to ask you about volumes five through seven.

DK: Okay.

EF: Say something about the retirement.

DK: I was afraid you’d ask me about volumes five through seven, so I’ll talk about retirement.
That’s really when we’re getting into phase 3 of Stanford. Phase 4 will be retirement, then,
because phase 2 was certainly intensive software work, and then phase 3 was back into
intensive analysis for “Art of...”

The next phase is going into retirement. As I said, I had my sabbatical year in Boston in ’86.
That was to be the climax and finishing of the TeX project. Then I come back from sabbatical
and get back to speed and so on. One of the things that happens when you come back from
sabbatical is people will say to you, “Oh, aren’t you glad to be home?” And, you know, I say,
“Yeah, it’s nice”, and all this. But I found that it wasn’t. I wasn’t really as happy as I let on. I
mean, I was certainly enjoying this research that I was doing, but I wasn’t making any progress
at all on Volume 4. I’m doing this work, giant component, Big Bang type of explorations, and
I’m learning all of this thing. But at the end of the year, how much more had been done? I’ve
still got this 11 feet of preprints stacked up in my closet that I haven’t touched, because I had
to put that all on hold for the TeX project. I figured the thing that I’m going to be able to do
best for the world is going to be to finish ”The Art of Computer Programming”. I can do
cutting edge research, but maybe I shouldn’t be just enjoying myself on this, but I should be
getting stuff out the door that’s going to be “The Art of Computer Programming,” which I had
promised to write in 1962, and here it is late 1980s. After two years, I started thinking about it
during the summer of ’88, as to what I should be doing with my life. At this point, see, I’m 50
years old. I was born in ’38, this is 1988. I decided that I didn’t need money anymore. I didn’t

need my Stanford salary. I had enough money in the bank. I didn’t get any money from the
TeX project -- that’s in the public domain -- but “The Art of Computer Programming,” you
know, [is] selling by the thousands every year all the time. So I can afford to do whatever I
want with my life. I don’t have to be employed. I can do what’s the best way to use whatever
gifts I have to put out. I decided that I really wanted to do “The Art of Computer
Programming,” and get this done. The only way to do it was to stop being a professor full time.
I really had to be a writer full time. I wrote a memo to Nils Nilsson, who is our chair, saying,
“Nils, I’ve decided that after two more years I would like to go on leave of absence and never
come back.” I would love to continue an affiliation with Stanford whereby I would be giving
occasional lectures, but I think the thing I really want to do is write “The Art of Computer
Programming.” I don’t like the idea of a professor who just spends all his time writing books
and getting paid for being a professor, so I shouldn’t call myself any more a fulltime professor.
I shouldn’t be drawing my Stanford salary. I’m going to be doing only the books, except for
occasional things. I’d like to be five percent time to keep participating in things, but I’ll never
get my books done unless I can really put fulltime into that. If I’m only going to make one
day’s worth of progress out of every 365, it’s going to take an estimated several centuries to
finish at this rate. I wrote this letter to Nils, and then we had meetings with the Dean, Gibbons,
and the provost, who you know is Jim Ross.

They thought maybe they could find a donor to Stanford who’d like to endow a professorship
for somebody who writes “The Art of Computer Programming.” They didn’t find that, but
they did say that we could have an amicable way to achieve this. It looked like in a year-and-a-
half we’d be able to find someone who would take over my role as leading the analysis of
algorithms activities in the department. Unfortunately, that never happened. We never found a
senior person to take over what I was doing. But as of January 1990 I became on leave of
absence. They allowed the leave of absence to continue until I was 55 years old and I could
officially retire with a pension. I didn’t get any buy-out or anything like this, like people are
talking about now, but I do get some of my health insurance and so on through Stanford. This
is the kind of retirement that I worked out. I was able to also create my own title. I’m
“Professor Emeritus of The Art of Computer Programming”, with a capital “T” in “The Art of
Computer Programming.” I love that title. So starting at age 55, which is officially the
beginning of ’93, I was Professor Emeritus. The arrangement was that I give occasional
lectures, which I’m now giving about three a year. We were hoping for more, like six a year,
but it’s on the average three because I’m out of town a lot. I have an office and a secretary, and
I’m on campus a lot. But I don’t have to raise funds for research projects. Unfortunately I don’t
have direct work with graduate students like I did before, and I don’t have regular teaching. I
enjoyed those things very much, and I think that the students that I had, I’m proud of every one
of them. The thing is, “The Art of Computer Programming” is something I have to do my best
at.

EF: Let me ask you a little easier question than Volume 5 through 7. Where are you in Volume 4?

DK: So, Volume 4: I’m on page 12 of Volume 4 right now, although I’ve already written 400

pages that come starting after about page 50. I’ve got a lot of it under my belt now, but you
know as a computer programmer you don’t write the initialization first. I’m at the point now
I’m ready to write the initialization to Volume 4.

EF: But this volume must make you particularly nervous, because it’s on combinatorial algorithms.

DK: It has [been] subject to combinatorial explosion, so it will Volume 4A, 4B, and 4C-- possibly
4D. I’m sure it won’t get up to 4Z, but there will be sub-volumes to Volume 4 because of the
huge growth in combinatorial algorithm. By the way, while it’s in my mind, let me, because it
related to a question you asked me last week and I didn’t think of a response at the time. It
was something about being an engineer versus being a scientist, or something like this. The
way I tended to phrase that is the relation between theory and practice in my life. I always
thought that the best way to sum up my professional work is that it has been a mixture of
theory and practice, almost equally. The theory that I do gives me the vocabulary and the
ways to do practical things that can make giant steps instead of small steps when I’m doing a
practical problem, because of the theory that I know. The practice that I do makes me able to
consider better, more robust theories, theories that are richer than if they’re just purely inspired
by other theories. There’s this basic symbiotic relationship between those things that’s
probably central to the whole thing. At least four times in my life when I was asked to give
kind of a philosophical talk about the way I look at my professional work, the title was always
”Theory in Practice.” I think the first time I did this you were chair of the department, and I
had just gotten the “Fletcher Jones” professorship. That was the title, and I was asked to speak
for five minutes on my life as I get this endowed chair at Stanford. My title was “Theory and
Practice.” I remember that in that talk I gave a kind of a spoof. I started out and I said, “Well,
I’ve written so many pages of books, and I’ve published so many papers, and I’ve had so many
students.” I gave a lot of the numerical statistics, and I said, “And that just about sums me up.
So now that I’ve got this chair, I’m going to follow the advice of the Fonz and ’Sit on it.’” I
remember I had made a pretty compelling case for why I was tired and ready to ‘sit on it.’ I
scared you to the point where you were really sweating blood there. Then, of course, in the
next sentence I said, “And of course, you know that this is impossible, and that I couldn’t
possibly do this.” And “Whew!” I could see you, you know, doing this. [Showing relief] That
was the first time I gave a talk about “Theory in Practice.” I gave another one; the next one
was actually very interesting. It was given in the Theater of Epidaurus in Greece, the best
preserved ancient theater. It was the keynote speech for the European Association for
Theoretical Computer Science. They had their annual meeting in Greece that year. Greece is
the place for philosophy, and also the words “theory” and “practice” both come from Greek
words. So naturally I decided I would speak on “Theory and Practice” in Greece, and I could
speak in this temple of Greek culture giving this talk. Melina Mercouri was the Greek Minister
of Culture, and she introduced me in the speech. It was a great moment of my life to
summarize the roles, the tradeoffs between the two. At that time I was working on TeX; it was
early ’80s. My main message to the theorists is, “Your life is only half there unless you also
get nurtured by practical work.” And, I said, “Software is hard.” My experience with TeX
taught me to have much more admiration for the colleagues that are devoting most of their life

to software than I had previously done, because I didn’t realize how much more bandwidth of
my brain was being taken up by that work than it was when I was doing just theoretical work.

EF: While we have just a moment left, if that Greek lecture was written up, do you know where it
is, so the audience could go look it up?

DK: I have a book called, “Selected Papers on Computer Science.” George Forsythe told me early
on when I came to Stanford, he said, “Don, sometimes in your life you’re going to be speaking
not to professionals, but you’re going to be talking to a much more general audience. It’s
always scary to do that, because you don’t understand… It’s easier to give a speech to
somebody that’s exactly like you than to somebody who has a different way of thinking.”
When I wrote for Scientific American or something -- every once in a while I would write
something that was not addressed to somebody in my own field. This book, 200 pages or
something, contains all of the papers that I wrote in this way. There are three or four versions,
takes on, “Theory and Practice,” including the Fonz Winkler one, are reprinted in that volume.
Thanks for asking.

EF: Okay.

EF: You’ve reviewed for us what you might call the chronologically-oriented themes of your
career. Pre-Stanford, first Stanford period, and so on, until your retirement -- your pseudo-
retirement, I should say. Cutting through all these are other kinds of themes that touch on in
many different points in the chronological explanation of your life. In my field, I really call
these the heuristics of leading a career. In fact, I told you once that I felt that one of the bad
decisions I made in my career was leaving what was then Carnegie Tech a year too early,
before I learned all I had to learn from Herb Simon. I don’t mean learning the material. Not the
content, but the heuristics of leading a life. Could you talk a little bit about that? If a Ph.D.
program is kind of a research training apprenticeship where the students learn these heuristics,
what are they learning from you?

DK: I have some slants that I would tend to emphasize. Other professors would emphasize other
slants. I don’t have a monopoly on wisdom of this kind. The kind of things that I would tend to
emphasize are not just doing trendy stuff. In fact, I’d probably overemphasize that. If
something is really popular, I tend to think maybe I back off. I tell myself and my students:
really to go with your own aesthetics, what you think is important. Not what you think other
people think you want to do, but what you really want to do yourself. That’s sort of been a
guiding heuristic all the way through. When I was working on typography, it wasn’t
fashionable for a computer science professor to do typography, but I thought it was important
and a beautiful subject. So what? In fact, other people told me that they’re so glad that I put a
few years into it because they could make it academically respectable and now they could
work on it themselves. They sort of were afraid to do it themselves. But all the way through,
when my books came out, they weren’t usually copies of any other books. They always were
something that hadn’t been fashionable to do, but they corresponded to my own perception of
what ought to be done. Also, your word “heuristics” triggers another thing in my mind, and

that is George Polya. Polya wrote this great book called, “Heuristics and Plausible Reasoning.”
Of course, I know heuristics is a great word for you because you had the ”Heuristics
Programming Project” and all these things. Heuristic, meaning discovery. Polya also inspired
me. I had the great fortune to get to know him because he’s a Stanford professor. He came to
my house many times and I spent a lot of time with him. One of the things that cuts across also
many years is he had an approach to teaching that he called, “Let Us Teach Guessing.” When
he was teaching his classes, he’s not saying, “Memorize this, guys.” He’s saying, “Here’s a
problem. How do you solve it?”, with the idea that the students are going to make mistakes and
then they’re going to learn how to recover from mistakes, as well as making guesses. These are
important heuristics for my life, both in the teaching aspect and in the research aspect. Let me
talk about the teaching aspect first. Polya gave a demonstration lecture that was filmed at
Stanford, and I saw it when I was still at Caltech. I saw this. He presents the students with a
problem, with something like, “You have a piece of cheese and you cut it with four strokes.
How many pieces are you going to get?” Something like this. Then he has the students try to
analyze this. He started out by looking at simpler problems, where it’s on a plane instead of in
three dimensions, and you only take two cuts; things like this. At the end of the hour he has all
the students understanding not only the solution to this problem, but also having taken apart
and discovering the solution themselves. That’s what goes into their brain, because then they
can solve other problems later on. I adopted this as a model for my own classes, already at
Caltech. Whenever I taught a class that had a decent textbook, I would devote the class time to
problem solving as a group, instead of reading to them or lecturing to them about what’s in the
book. I would assume that they could read the book on their own. They come to class, we do
things that aren’t in the book. We take a problem that’s similar to ones in the book and we try
to work on it, almost like a language class. I go down the row and, “It’s your turn, your turn,
your turn.” People soon learned that if they make a mistake, we all do, and we recover. I’d give
a rule that nobody’s allowed to speak more than twice in the hour, so that everybody
participates. My teaching assistants would take notes, so that the students could concentrate on
what was going on instead of having to worry about having their notes right so they couldn’t
listen fully. The teaching assistant’s notes would then be typed up later on by Phyllis and
distributed to everyone. So we could record these sessions in the class as to things that aren’t in
the book, and how to recover from errors. I kept that style of teaching all the way through until
I retired. That was a great source of pleasure. I could use it except in the cases where there
was no textbook available. In my own research, this idea of guessing is also very important.
When I read a technical paper, I don’t turn the page until I try to guess what’s on the next page.
Or, [say] the guy writing the paper is going to state a problem. Before I look any further, I’ll
say, “Now how would I solve this problem?” I fail almost always. But I’m ready now to read
the solution to the problem, so then I turn the page and I see. But by this time I’m ready for
what’s happening. When I work on “The Art of Computer Programming,” over a period of 40
years I’ve gathered together dozens of papers on the same subject. I haven’t read any of them
yet except to know that they belong to this subject. Then I read those papers, the first two
papers extremely slowly with this “Don’t turn the page until you’ve tried to solve the problem
yourself and do it yourself.” With this method, I can then cover dozens of papers. The last

ones, I’m ready for. I just know what to look at that’s a little different than I’ve already learned
how to absorb.

That’s been a key heuristic in my own research, based on guessing.

 EF: That’s a really interesting story. In fact, my little footnote to that is that I called my own
project, the “Heuristic Programming Project” because I didn’t want to infringe on John
McCarthy’s term, “Artificial Intelligence.” Stanford Artificial Intelligence Laboratory.
Everyone knew what programming was, but no one knew what heuristics were. When they
asked me, I would just quote Polya. I’d say, “Polya says heuristic is the art of good guessing.”

DK: Yeah. Okay, very good.

EF: Anyway, I wanted to ask you a little bit about the process of gathering up the literature and
writing them in “The Art of Computer Programming” that you’ve been doing. To go back to
Artificial Intelligence, part of the program is a problem solver, but then there’s the part we
don’t understand very well, which is the problem generator. I’ve always thought of “The Art of
Computer Programming” as some kind of a problem generator for you. In fact, I’ve been
jealously thinking of that. As you begin to put things together, you see the holes.

DK: Yeah. The main perk that I get from working on “The Art of Computer Programming” is that
I get first crack at a lot of really natural research problems. Because I’m the only person so far
who’s read a paper by two authors who didn’t know of each other’s existence. I can see where
this guy’s ideas fit in with this guy’s ideas. They’re both working on the same problem, but
they don’t realize it because they have different vocabularies, very often. Artificial intelligence
people, you know, have a algorithm or something like this. The electrical engineers are
working on a problem with a different vocabulary, a different slant on it, but they’re thinking
of something else. The people in operations research are thinking of another way. Each person
will take the problem and solve it in one respect. Person B will solve a similar problem in
another respect. I get to be the one who solves problem A in respect to B and vice versa. Often
these problems are natural and unify the subject. They tie the problems in with even more parts
of the subject, which make more of a pattern instead of having page 1, page 2, page 3.
Somehow it’s a network instead of a branching structure. Then there are also the other
problems that I can’t solve. Those make good research problems. I usually know somebody in
the world that I can suggest it to, and then science advances that way. But I get first crack at it.
If it’s an easy one, then I have a chance then. It’s fun to do this. The danger is I have to know
when to stop. If I couldn’t go on, if I had to solve a problem before I turned to the next
problem, I’d never get to the end of The Art.

EF: Another way to put it is you can’t plug every hole.

DK: That’s right. Very good. It’s a lot of work writing “The Art of Computer Programming,” but
the big benefit is this chance to see patterns that other people didn’t have the opportunity to
see, because they just didn’t spend 40 years gathering the material the way I did.

EF: I wanted to ask you, again it’s a heuristics question, but it has to do with another qualitative
aspect of picking problems and finding their solutions, which is the aesthetic that you
mentioned. You mentioned that you had an aesthetic, that other people have aesthetics. You’ve
mentioned to me in the past some various criteria that you use in your aesthetic. Do you want
to mention any of those?

 DK: Okay. For example, when I’m writing a computer program, I could have different aesthetics.
I could say that the program should be the fastest possible, right? Or it could be the one that
uses the smallest amount of memory. Or the one that takes up the smallest number of
keystrokes to type. Or the one that’s easiest to explain to a student. Or the one that’s hardest to
explain to a student. There are lots of different measures that you can apply to a program. Or to
anything; to a piece of literature, music, whatever. You can say, “My goal is to make this best
for teenagers” or whatever it is. Somehow you have an audience in mind, or some criterion.
All artists are trying to optimize some constraints or other that you have in your mind, as to
what you consider most beautiful or most important in this particular piece of work. In the
combinatorial work I’m doing now in volume 4, the main goal tends to be speed, because we
have these problems that involve zillions of cases. Every time we can save 100 nanoseconds, if
we’re doing it a billion times, that’s an hour. We look for things like that because we know that
everything we do is going to have a large payoff in that way. But other programs, I just want it
to be elegant in a way that hangs together; somebody can read it and smile. There are so many
different criteria of it. But in all cases, the thing that turns me on is the beauty of it and the
style that goes with it. Dijkstra had a great remark about teaching programming. I find style
important in programming. Like the style in IT, in Perlis’ program, was not great. The program
worked, but it was sort of bumpy. Another program I read when I was in my first year of
programming was the SOAP II assembler by Stan Poley at IBM. It was a symphony. It was
smooth. Every line of code did two things. It was like seeing a grand master playing chess.
That’s the first time I got a turn-on saying, “You can write a beautiful program.”

I’ve mentioned that several times, because it did have an important effect on my life. I’m
worried about the present state of programming. Programmers now are supposed to mostly just
use libraries. Programmers aren’t allowed to do their own thing from scratch anymore. They’re
supposed to have reusable code that somebody else has written. There’s a bunch of things on
the menu and you choose from these when you put them together. Where’s the fun in that?
Where’s the beauty of that? It’s very hard, [but] we have to figure out a way that we can make
programming interesting for the next generation of programmers, that it’s not going to be just a
matter of reading a manual and plugging in the parameters in the right order to get stuff. I’ve
got to say something else, too, that pops into my mind. I saw a review a year or so ago in
Computing Reviews. Someone had written a book, something about tricks of the trade, or
something like this. It was somebody telling how to use machines efficiently by using some of
the less well-known instructions in the machine. The reviewer of the book hated this. He said,
“If I ever caught any of my programmers using anything in this book, I’d fire them.” Of
course I immediately went to the library and got out the book, because this was the book for
me. My attitude is, if there’s a method that works well and it’s not commonly known to

students, let’s not stop using it. Let’s teach the students how to use this so that it’s
understandable and it can be used in the next generation. But this guy, he was saying, “No, no.
We already understand all the possible good ways to write programs. I’m not going to let
anybody write for me using anything subtle.”

EF: Yeah, that was the kind of thing that I was telling you. Bob Bemer would come down when I
was a graduate student and tell us about these tricks, like unintended side effects of
instructions. “The designer never intended this but you can do this with it.”

DK: Of course, I told you about when I’m writing RUNCIBLE and we were saving one line of
code here because we can use one constant for two different purposes. [In the 650] you could
store a data address and you could store an instruction address. You could actually put one
constant in there, and you could store it with one thing and it would zero out one field and
store another one. So we could save; instead of having two constants we could have one, all
kinds of stuff like that. That is terrible programming. I don’t recommend it at all. If you have a
machine that has only 2000 words of memory, okay. But I’m not recommending tricks just
because they’re tricks. Although if your aesthetic is to cram something in small, like you’re
writing something for Gameboy or something, and you can put ten extra features in there
without increasing the size of the cartridge, okay, that’s fine. But [for] most of the things, it’s
much more important to have stuff that is not tricky to the point of breaking whenever you
make a slight change to something else. With literate programming you can document this
stuff very carefully, to warn people against it, but still it’s not great [or] to be recommended.
But the fact is, a computer doesn’t slow down when it gets to a part of the program that was
harder to understand. The computer doesn’t say, “Oh, I don’t understand what I’m doing here,”
and then go faster like a human being does. So there’s no reason for us not to put subtle tricks
in our programs -- unless we can’t document them enough so that the person who’s going to
have to modify the program won’t be able to fathom it.

EF: Don, I wanted to ask you about another word that you have used, and lots of scientists use the
word, difficult to define, but the word is “taste.” Good taste in problems, good taste in finding
problems, good taste in solving problems. Do you want to say anything about good taste?

DK: Well, there’s no accounting for taste. I was going to mention how Dijkstra was talking about

style. That is, you want to teach your students that they should have taste, but you don’t want to tell
them to have the same taste as you. You try to give them the idea of taste. You can imagine a
music composer. If Beethoven or Stravinsky or somebody would take on students, would they
be a great teacher if they told them to compose exactly like they did? Or if they said, “Here’s
an example of a strong style. Now develop your own.” That’s what you really want to do. My
feeling is it’s important to have taste driving yourself and to try to refine your taste, but you
can’t impose it on somebody else. There’s no absolute way for me to know that what I believe
is beautiful is going to appeal to somebody else. Still, if I am trying to define beauty by what
other people think is beautiful than me, I think I’m making a mistake. That’s why I was talking
about trendy stuff a minute ago.

EF: The other issue that you’ve talked about in the past is exercising some control of your problem
selection by knowing what it is you don’t know. Any words of wisdom about that?

DK: Well, the best way to learn what you don’t know is to try to program it, as we were saying.
Well, not exactly. Words of wisdom? I don’t know. I often learn what I don’t know by trying
to program it for a computer. But also I found, like in trying to translate something written in
another language, if I try to put it in my own words, then I realize that I don’t know. If I read
somebody else’s translation, I don’t get as much out of it as if I take a text and try to put it in
my own words. This exercise of being a teacher, or in some way putting yourself into it, is the
best way for me to discover what I don’t understand. You can think you understand something
until you try to program it, or do some other thing where you are really not just repeating
something but you’re actually processing it.

EF: When you discover some of these holes that need to be plugged, some of them are easy to
solve, and some of them you just don’t know what the answer is.

 DK: Yeah. I remember the first time in my life when I spent more than 10 hours on a problem and
actually got the answer. When you start out in life, when you start doing something that you
don’t know, you think of a question and then you answer it. First then you discover that oh, the
Greeks already had done that. Then you learn a few more things, and you ask some more
questions, and you say oh yeah, this was done in the 17th century, the 18th century, 19th
century. Finally you get to something that, for the first time in your life, you discovered
something that, as far as you know, nobody had discovered before. Then you’re asking
questions and you don’t get anywhere with them. You have to go on to the next question. I do
remember there was a time, when all of a sudden… Up until this day, if I couldn’t get it in the
first hour, I didn’t get it even if I spent a week on it. But here was a time when I had actually
worked on something more than 10 hours and I did get the solution. That was the big time in
my life to realize that I could go that far. What I do now, though, is I try to give myself an hour
on these problems, and then I say, “Well no, I’ll have to pass that on to somebody else,” send a
letter to somebody who might do it. Unless I think I’m almost there, if I think “Well, maybe in
another five minutes I’ll get the answer.” Then another hour later, if I still think I’m five
minutes from the answer, I keep going at it. Sometimes I’m trapped in this mode for a week
still. But not too often anymore. Just in the past week I sent off two problems to other people
that I thought would be worth their attention, that they might like.

EF: I’d like to switch to the personal Don Knuth. We at Stanford know the personal Don Knuth.
The people watching this video or the scholars of 50 years from now may know the
professional and mathematical Knuth, but they won’t have the privilege of knowing the
personal Don Knuth. So I wanted to ask you a few questions that just relate to the Don that we
know and love. You say in your various biographies, you always end by quoting or saying to
the reader that your avocation is music, and if I had to write out my biography like that, I
would also. I would also say my avocation is music. I get as much of a thrill every week by
going to the Stanford choruses as anything else that happens in the week. But your musical
background is way more extensive than mine. Could you tell us something about the role of

music in your life, and if there is any connection with your work? What the role of music in
influencing your work has been?

DK: Okay. Well it’s certainly one of my greatest loves, is music. We were just talking a minute
ago about taste. I don’t like all kinds of music. Like everybody, I have certain music that really
touches me deeply, and other kinds that I’m not really enthused about. For example, I spent an
hour-and-a-half last night playing through the score of South Pacific. More than half of the
songs in there I find really beautiful. On the other hand, if I were a professor of music, I would
have to find a way to distance myself from opera, because I’ve given opera a good shot many
times, and I’ve seen excellent performances, but it has never turned me on. So everybody has
their taste. My own musical tastes are fairly eclectic. I love jazz, I love to play things by Dave
Brubeck, but other kinds of jazz don’t seem to work very well for me either. I like Beatles
music. I don’t get too thrilled by some kinds of hip-hop and so on. Every generation also has
their own favorite kind of music. It must be partly because of the records that my father
played when I was growing up. Things like Brahms’ Symphonies are things that are deeply
satisfying to me now too, by their familiarity, by what I learned. My father was a musician. He
was a church organist, and a pretty good one. He played at the Chicago World’s Fair in the
‘30s before he got married. I started piano lessons probably when I was five years old.
Throughout high school I was the accompanist for the chorus, for the choir, and I played in the
band. I wanted to play bassoon, but that was taken, so I played tuba -- the sousaphone. Those
were the two instruments that you didn’t have to own yourself. The school owned the tuba and
the bassoons, and our family was poor. We didn’t have money to buy instruments. My dad
earned enough money to buy a piano by teaching piano lessons himself. I did then get into the
band as well as the keyboard music. I took a year of organ lessons when I was in high school,
from my piano teacher. I almost became a music major, as I mentioned, in college. I went into
physics but if I had gone to University, I would’ve been a music major there. I started
looking at arranging. I made arrangements for our school band. When I got into college I wrote
the music for a five-minute skit that our fraternity put on. It was called “Nebbishland.” That
was when nebbishes were popular in greeting cards. I don’t know if anybody in the future will
know what nebbishes were, but one of the lines in there was “We’re all on the verge of
insanity.” It might bring back some memories anyway. Nebbishes. “I’m a nebbish and a
nebbish isn’t snobbish.” I’ll probably put this great musical piece of mine into the final volume
of my collected papers, which is going to be called “Selected Papers on Fun and Games.”
There’ll be a little bit of music in there that I did for fun over the years. During the ‘60s, at the
church where I was going, I was a member of the choir. I had mentioned to the choir director
and organist that I had taken a year of organ lessons when I was younger. He knew that I could
do some keyboard skills. If we needed a harpsichord accompaniment or something, I could
help out and he could be directing, or I could go to the console while he’s directing and I can
be playing. One Saturday I got a phone call from his wife saying, “My husband has just come
down with a detached retina in his eye.” In those days, the only way to cure this was for him to
sit still for six months with a pack holding his head steady. She said, “Don, did you say that
you knew a little bit about the organ? Can you play on Sunday and be our temporary
organist?” That’s what happened. For six months I was the organist at our church in

Pasadena. Fortunately Pasadena was the home of some of America’s best organists. There was
a famous teacher, Clarence Mader, and five of his students who are still located in the
Pasadena area. If you look at the National Recitalists of the American Guild of Organists, five
of them are from Pasadena. There are others from the east and all around, but we had a very
good concentration of this. So I joined the American Guild of Organists and got to see some
very excellent musicians. At that time I learned something about the literature of the organ. I
thought hey, it would be cool in the future if I sort of was a college professor with an interest
in organ. If I had 40 more years to look at this music, there was some neat pieces of organ that
are so good I could never get tired of them and I could learn to play. When I had my year in
Princeton between Caltech and Stanford, I took organ at the Westminster Choir College. I had
a teacher there and I had some other classes there at the college as part of my year. My teacher,
Mary Krimmel, taught me a lot about how to perform. Also, I had made some friends in
Pasadena that had an organ in their own house, and that seemed kind of interesting to me. My
father also had an organ. It was an electronic organ but he had an organ in our house in
Milwaukee. When Jill and I were planning our dream house to be built on the Stanford
campus, we decided that we would have two special rooms in the house. One was my room
where I would have a music room and have room for an organ, and one was her art room, a
studio, where she’d have good lighting for working on her art projects. We couldn’t afford to
put in an organ at the beginning, but the architect made sure that there would be enough
bracing in the floor to handle several tons of weight and there was a nice 16-foot ceiling so that
we would have room for a good organ. I spent the next few years thinking about what kind of
an organ would be good to have in the home. Peter Naur in Copenhagen introduced me to five
great organ builders in Denmark. The year that I spent in Norway, I visited him also for a week
and talked to some of the world’s greatest organ makers that he could introduce me to in
Denmark. I found out, though, that I couldn’t buy a Danish organ with any reasonable
economic certainty. Because the way it works in Denmark was that they don’t give you a fixed
price on it. The Danish labor contracts are tied to the rate of inflation. I would have to give
them a blank check and say, well, whatever it costs, I would have to pay. What happened then
is that I also talked to American organ builders. I found a very fine one whose shop is near
UCLA, and we hit it off very well. I started going around to all the organs around the Bay
Area and all the Stanford organs and listening to each pipe and each note and making notes,
and then worked with the builder, Pete Seeker [ph?], down in the Los Angeles area. It turned
out then that they built an organ for my house. It’s a nice company that builds about four
organs a year. They made an organ for my house, and I still haven’t seen another house organ
that I would rather have than it. It’s designed to be enjoyed by the person playing it, rather than
for the audience. But it really has a lot of varieties of tone.

EF: Why don't you continue with your discussion of the organ?

DK: My main hobby had turned out to be then the focus on organs, and this had lots of interesting
little side stories. I'll give you a few. In the first place, I'm making the arrangements for this
organ in my home just at the time when I'm finishing volume three. I have a few jokes in the
indexes to my books. Some of them haven't been discovered yet. Like one of them in the TeX

[book] that people found. There's one that I think, if you look under “ten“… No, no, I'm
sorry. If you look under, oh what's her name? She was the star of the movie "Ten." Oh,
goodness , you know the movie I'm talking about?

EF: Yeah, sure.

DK: Anyway, she's this beautiful woman, and I put her name in the index of the book. If you look
there it will just tell everywhere the number ten appears in the textbook; you can find it
indexed that way. In volume four I have a place in the index where it says "pun resisted." It
refers you to a page, and you're supposed to figure out what pun that I could have made on that
page that doesn't appear. I have fun with my indexes. I try to make them useful, but it takes me
six weeks to write them so I have to do something to amuse myself during that six weeks. In
volume three if you look under "royalties, use of" you get to a page that has a picture of organ
pipes on it, because this is what allowed me to get an organ in my house. In those days it cost
$35,000. Other people on the block, their house cost $35,000 in those days. You can't believe it
now, but that was true. That's one little story. That was actually put in before the organ was
built, but I had to sign a contract some years in advance. Through the years, then, the fact that I
can play organ has given me intro to lots of the great organs of the world. I don't have to be a
great organist, I just have to be pretty good for a computer scientist. Then the leading computer
scientist, my host wherever I am, Mexico City or Paris or whatever, will know somebody who
knows an organist. Then I get introduced, and they'll take me over there, and I get to play on
the organ. I've played on the world's best organs. I played on the largest organ too. I got to a
point where I had sort of given plenty of lectures, and I couldn't accept any invitations to travel
to give a lecture. But a guy in Philadelphia wrote to me, and he said, "Don, we really want you
to lecture at Drexel University." He says, "Now about organs." He said, "If you come I'll let
you play on the Wannamaker organ, which was the largest musical instrument in the world.
Then we can go to Eaton Hall, and then we can go to Benjamin Franklin…this old American
organ", and so on. He arranged four great organs for me to play in the Philadelphia area, so
naturally I went to speak at Drexel University.

EF: “It's a deal”, yeah.

DK: The last time I was in Paris I got to play on a really great unique organ. I had two hours to
play on it. I went to Israel, I could play on the organ in the Mormon Center, wherever. This fall
I'll be playing in Bordeaux. I was in Zurich -- organ -- last year, or a year and a half ago. I don't
have to be a great organist in order to have these opportunities. I just have to be a computer
scientist who is not too bad. I don't play in public very much. The one exception, really, was at
the University of Waterloo about five years ago. They have an organ professor there, and he
and I put on a concert of organ duets -- music written for two performers at one or two organs.
I practiced with him several times for this. That was the highlight of my organ playing, where
we put this on. The music was, I guess, broadcast a couple of times on Canadian radio as well.
I got to work with a really fine organist. On my web page there's a reference to the program
that we played, some very interesting music.

EF: Yeah, I was going to say -- if they broadcast it, you might have tapes, and you can put them on
the website.

DK: Yeah, I think I might have a tape in my collection somewhere. Good idea to try to put it on
the Internet.

EF: Don, let me move on to something which is important in your life and which we all know
about. The world didn't really know much about it until you published the book "3:16".
Namely, your religious belief, and your studies of religion and religious thought. Do you want
to say anything about that?

DK: Well, yeah. This is the Computer History Museum, but it is part of my…

EF: We're talking about you, though.

DK: That's right. The thing is, I think computer science is wonderful, but it's not everything.
Throughout my life I've been in a very loving religious community. My father -- also my
mother, it wasn’t her career, but she sang in the church choir for 60 years -- but my father
dedicated his life to being an educator in the Lutheran school systems. I was raised in Lutheran
schools, and Lutheran high school, before I went to college. I come from a Midwestern
Lutheran German background that has set the scene for my life. This is something that I've
gotten to appreciate, that Luther was a theologian who said you don't have to close your mind.
You keep questioning. You never know the answer. You don't just blindly believe something.
Also, he had ways of making it both intellectual and faith, as a combination. That's part of my
background. I had a lot of exposure to it as I'm young. I'm also a scientist. On Sundays I would
study with other people of our church on aspects of the Bible and other topics in religion. I got
this strange idea that maybe -- the Bible is a complicated subject -- maybe I could study the
Bible the way a scientist would do it, by using random sampling. Like a Gallup poll. You have
a complicated thing and you want to look at a small number of samples. You talk to 1000
people and you try to find out what the sentiment is in the United States about something. I
thought, well what if I did this with the Bible? This was a complicated book. There's been tens
of thousands of books written about the Bible. Instead of somebody else telling me what parts
of the Bible to look at, what if I just chose parts that were selected in an unbiased way? I was
doing this also with other things. I wrote a paper… About this same time we had this
conference which was a pilgrimage to Khwarizm [now Khiva, in Uzbekistan] . The word
algorithm means “from Khwarizm”; it's an Arabic word. We went to Khwarizm, and I gave a
talk there trying to analyze what is the difference between a mathematician and a computer
scientist. We did this by looking at page 100 of many books. We sampled the works of
mathematicians to find out, what do mathematicians do? From an AI point of view we tried to
say what would we have to program in the computer in order to reproduce page 100 of these
books. It's this idea of sampling. I was using it also for grading term papers. A student gives
me a 50-page paper. I don't have time to read 40 of these papers and get my grades done. I only
have a week to do the grading. So I would look at parts of the term paper. The student wouldn't
know which parts I was going to look at, but I would look at parts of them and I would use that

to assess the quality of the whole. I got in trouble with this Master's thesis about the CS
bookkeeping problem, that we talked about last week. But anyway, I'm using sampling. So I
said, let me do it to the Bible too. I wanted to have a rule. I would study this with my friends
at our church in Menlo Park. We would, as a group, discuss randomly chosen parts of the
Bible. The rule I decided on was we were going to study Chapter 3, Verse 16 of every book of
the Bible. Genesis 3:16, Exodus 3:16, and it ends with Revelation 3:16. The reason is, that if
any part of the Bible is known by its number, it's John 3:16. There's a verse in the Bible that
people put up on Super Bowl Sunday, and it's supposed to be a capsule summary of the gospel.
A lot of people knew it; 3:16 had a catchy phrase in people's minds. I said, "Okay, we all know
John 3:16. Nobody knows what's Genesis 3:16." Well it turned out very interesting. It's about
women's liberation. Exodus 3:16, and so on. I mentioned Peter Wegner last week. Well, his
wife Judith Wegner is a great scholar of women's issues in the Hebrew scriptures. She couldn't
believe it, but three of the verses that I chose are key verses in her own studies. It just turned
out a really strange coincidence. Isaiah 3:16 talks about women strutting. Anyway, it's very
funny. It was just serendipity, but in fact there's a nice joke about it. Somebody called it a
“cross section” of the scriptures because of the cross in Christian theology. I did this with my
friends in Menlo Park. Actually I had announced that we were going to meet the next Sunday
and we were going to study Genesis 3:16, Exodus 3:16. Then I came down with an attack of
kidney stones, and I was in the Stanford Hospital. We couldn't meet for our first session of this
group. But I looked and I was in hospital room 316. So I said, "Whoa. Well, God wants me to
continue with this project."

EF: A big sign.

DK: So we went through, and the class grew in interest all the way through. It could have been a
real dud [if] all these are really boring, but it didn't happen that way. It was sustained all the
way through, and people got inspired. Some of the women in the class were very good at
calligraphy, and they would take these verses and they would write them beautifully, and we'd
put them up in front of us as we're studying the things. I had this experience in the late '70s
where sampling gave some insight into the complicated thing called the Bible. All of a sudden
I get this “Aha!” moment in the middle of the night after I met Hermann Zapf and a whole
bunch of other experts on letter forms. I'm working on the TeX project in the early '80s and I
said, "Boy, this class that we did on the 3:16 turned out to be really interesting for us. It would
be interesting to other people too. We could make it into a book. What if I asked Hermann if
he would do a few pages of a book for me like the women in the class had been doing?" He
was sort of the dean of all the calligraphers of the world. He's the god to the calligraphers and
he knows all the calligraphers everywhere. I didn't really dream of asking him to do it, but I
asked him to do the cover. I said, "Herman, I got this strange idea for a book on 3:16. Can you
make for me the most beautiful 3 that's ever been drawn in the history of mankind, and the
most beautiful colon, and the most beautiful 1 and 6 to go with it, and make it for the cover of
the book?" He sends me back a letter. He says, "Don this is wonderful" and he also gives me
sketches of a couple other verses that he looked at in his German Bible. He says, "Don, I know
the best calligraphers in every country of the world. We could invite them, each one, to do a

page." So he's on the bandwagon. I got him, and everybody loves him. To make a long story
short, as I'm on my sabbatical year in Boston I also am going to the Boston Public Library
several hours looking up what all the greatest writers about the Bible have said through the
centuries about Genesis 3:16, et cetera, et cetera. I made my own translations of these verses.
This ties in with your question a minute ago about how do you know what you don't
understand? I'm thinking if I really want to understand Genesis 3:16 I shouldn't read somebody
else's translation, but I should look at the Hebrew words and how those words have been used
in other parts of Genesis and so on; how other people have translated these. I copied out 60
different translations of each verse, so I knew that in my own translation every mistake I made
had also been made by at least ten other people. Then I made my translation, and I sent out a
letter -- Herman and I signed it, both -- commissioning the best artists all over the world to do
these verses as a page in the book. While I'm in Boston these artworks started coming. It's like
getting a Christmas present every day, with these beautiful mailing tubes and all of that. I
mean, the calligraphers also write beautiful letters; "Dear Don" and things like this. Many
stories involved with individual pages later on. That's why I know I can say that the graphic
artists are the best people in the world, because Jill and I have met most of these people in
subsequent years. We didn't know very many of them, of course, in the beginning. Then I had
to write the actual text to go with it. I could go to Harvard Theological Library, and the Boston
Public[Library], and I spent a few days at Yale Divinity School, and the Graduate Theological
Union at Berkeley has a great library. Here in Menlo Park we've got an excellent library in St.
Patrick's Seminary. And all the theological literature is well indexed, so that I can, like Jonah
3:16, you can see what articles in the theological literature have been written that refer to
Jonah 3:16. So I'm not just having a cross-section of the Bible, but all the secondary literature
about the Bible. There's all these tens of thousands of books. I can just look at a few parts of
them that are relevant to this thing, and I can crack open books that I would never see before.
For example, John Calvin writes 90 volumes about theology. But I'm a Lutheran. Why should I
ever read any of these? But, no. Now I look at a few pages of John Calvin. He wrote about
Genesis 3:16. Okay, good. I find out he's got some insights that none of the other people had. I
get to appreciate John Calvin. I get to appreciate St. Patrick. I get to appreciate people from
early days of Christianity, different people in the 17th Century, 18th Century, 19th Century,
20th Century, all the different streams; atheist, Jews. Not too many Muslims, but there was
some connection with India and so on that came up. It turned out to be really interesting. This
idea of sampling turned out to be a good time-efficient way to get into a complicated subject.
The result was that I actually got too confident that I knew much more. I started to feel that I
knew more about the Bible than I actually had any right to do, because I'm only studying less
than 1/500th of the Bible. But the thing is, people have this idea. There's a classical definition a
liberal education is that you know everything about something and something about
everything. Now I had the point where there were a few things that I knew everything about. I
mean, I had 60 pegs of things that I had researched and I had found out just about everything
that had been written about these small parts of the Bible, but these I had surrounded. There
was nothing vague, so everything else in the Bible sort of could be tacked onto something
solid. It gave me more of a secure feeling that I understood the Bible scholarship than I really

did. But it really shows that this methodology has a lot of merit as long as you don't bias it to a
particular way. It turned out to be an educational experience for me. I met these wonderful
artists, and their work was shown all around the world. It was supported by the National
Endowment for the Arts, and it got into many countries. It was shown in the Guinness Museum
in Dublin, and greatest places like that. I saw some of the work in San Francisco in February
on exhibit still.

EF: Is it still up there?

DK: The original deal was with the artists that they retained possession of the work, and I was
paying them some money for the reproduction rights. What eventually developed was that the
collection was so good, there was a strong feeling that it ought to be kept intact. So we wrote
to them saying was it okay if the San Francisco Public Library wants to keep it in their
Harrison Collection. They have the world's best collection of calligraphy, and they would like
to accession these works into their collection. The artists agreed to this, so that's what
happened.

EF: So it's permanently in the San--

DK: It's permanently in the San Francisco Public Library.

EF: Oh, magnificent.

DK: Yeah. So I had to come out of the closet saying, "Oh, I'm going to write a book about the
Bible." Well, Isaac Asimov did this. I mentioned this for the first time to somebody when I'm
living in Boston that year on my sabbatical year. There was an ACM SIGCSE convention there
-- the computer science education group -- and I mentioned that I was spending my time at the
library looking up these Bible verses. I thought they would say, "Oh, gosh, you're over the hill
now, Don." But surprisingly, people to my face didn't really laugh at me too much. It's
something that I never would talk about in a Stanford class, but this is a part of my life that
integrated with it.

EF: Which is why I brought it up.

DK: Okay, thank you.

EF: I'd like to see if we can bring this full circle by getting into, finally, two aspects of your career
looking back a little bit and looking ahead a little bit. We know you, and the world knows you,
pretty much -- and you've said it yourself I think on the web somewhere -- that you are pretty
much a lone wolf. In fact, I think you even said it last week in this interview.

DK: Yeah, could have been.

EF: You operate by yourself. We all know that. We leave you alone. You've cut yourself off from
email. You work in your study for long hours. Two questions about that. Is that a myth?
Because you keep talking about all the places you've traveled to and all the people you see.

And the other is, how do you feel about working with collaborators?

DK: Okay. I think I mentioned last week that the trouble… I enjoy working with collaborators, but
I don't think they would enjoy working with me, because I'm very unreliable. I march to my
own drummer and I can't be counted on to meet deadlines because I always underestimate
things. I'm not a great co-worker. Also I'm very bad at delegating. That's why I resisted any
chance, any opportunity to be the chair of the department. I knew that I would just be awful at
[it]. I'd have to do it myself. I have no good way to work with somebody else on tasks that I
can do myself. I'm just unable to. It's a huge skill that I lack.

With the TeX project I think it was important, however, that I didn't delegate the writing of the
code, as we said before. I needed to be the programmer on a first generation project. I needed
to write the manual too, a manual. I can't understand… Other users write the manual their way,
but I had to write a manual too. If I delegated that, I wouldn't have realized some parts of it are
impossible to explain, and I changed them as I wrote the manual realizing that it was a stupid
thing that was there. So I was the tech writer of the project. I was a user of the project. I had to
use TeX in order to typeset volume two. As I'm typesetting volume two, I kept track of the
changes that I made to TeX as I went through volume two. It turned out almost a perfect
straight line: every four pages I type, I got a new idea for how to improve TeX. For the first
500 pages of that 700-page book, I got a new idea every four pages. The last 200 pages were
sheer boredom and I didn't do it. With 500 pages, if I hadn't been the user, I would not have
had such a good system. I had to live with it before I gave it to somebody else. These are cases
in my life where I think it's a good thing I didn't delegate. Then again, with the TeX project,
once it was there, once I had this prototype out there, then we're getting more and more users.
Then we would have every Friday, for two or three hours, a community meeting of several
dozen people discussing questions, issues, problems with TeX, how to make it better, how to
adapt it to their problems. Everybody coming to Stanford knowing about this could join our
sessions on Friday. Also there was quite a team of volunteers associated with the project.
There I'm working together with the group, but I'm still insisting that I be the final filter on the
stuff. Now I should have mentioned, on this giant component work that we did, I mentioned
that Philippe Flajolet and Boris Pittel were involved with it. But also what turned out is, I got it
to a point where I couldn't prove some of the main theorems. I met Svante Janson, one of the
greatest mathematicians, a Swedish guy. I was visiting Norway, so I went up to Uppsala to
show him my work on this. He got enthusiastic about it, and he saw how to get me to the next
level of some things that I was stumped on. Then he had a visitor from Poland who was there,
so it turned out that our paper was published under four authors. He was the leading author
because of alphabetical order, and so that's a joint work. Svante and Tomasz [Luczak] and
myself and Boris all worked on the drafts of this. It's a giant paper too. It filled a whole issue of
a journal, I don't know, 120 pages or something like this. We went through many, many drafts
of this, all working together on it. So it's not that I can't ever work with anyone. In the same
room with a person, I think I mentioned that I couldn't think when I was with Marshall Hall,
and so on.

EF: It's too distracting, yeah.

DK: There was a guy in Princeton who was my office mate, and he and I were perfectly tuned to
each other. Ed Bender. Ed and I, I mean, he could start a sentence and then I would know.
Then we would work on a problem and I would take it as far as I could. Then I'd be stuck and
then he would know how to do the next thing. Then he would be stuck and then I could take it
over. Once in a while you find somebody where you can really do this online interaction, and
the synchronization problem is nil, and it works very well. But I found that actually terrifying,
because it would be your responsibility that we had to invent science whenever we were
together. I already had promised to do so many other things, if I get more stimulation it’ll kill
me. I have to finish The Art of Computer Programming, and all these other things. So part of
my being a loner is in order to fulfill the responsibilities that I have already accumulated. And
knowing that I'm not that great for integrating in with somebody else's agenda; I've got too
strong opinions of my own as to what I have to do. On the other hand, I came to Stanford so
that I could collaborate, so that there would be a music department that I could be with.
Caltech didn't have a music department. At Stanford I could be a chair of the Ph.D. thesis
committee, I could chair the oral examination of music students, and students of German, and
things like this. I like to come to a place where there are people who aren't clones of myself
that I can learn from. Whenever I am stumped on something, I can turn to them, and they can
help me learn this. I need people to help me read German and French and Japanese and
Russian things, Sanskrit, and so on, when I get into a historical question where I don't have a
translation handy. All kinds of parts of the university are very important that I collaborate in
that way, but not so often where it's a long term project.

EF: I think, in all of that, there's probably -- I don't want to go into it here because it's your
interview not mine -- but I think there are some deep issues there having to do with problem
solving and concentration. When you're into something really deep, like piecing together 14
different articles on one subject to try to make sense of them, it's straining all the limited
human information processing abilities, and you really can't stand a lot of input. Too many
symbols change context.

DK: Yeah, it's a bandwidth question. It's easier for my left brain to communicate with my right
brain than for me to communicate with another person's brain.

EF: Don, there's a little last thing I want to talk about. This is a little bit of a paradox. Well not so
much; you said you like collaboration, so it's not really a paradox. But you say, I think
somewhere on your website or else in one of your publications, that you're predicting that the
future of computer science will be in terms of contributing pairs of people.

DK: Yeah.

EF: One a computer scientist, and one somebody from another discipline. I'd like to have you talk
about that, particularly in view of the fact that you did string search algorithms, and yet you
did not collaborate with a biologist; those people have the most intensive string search

problems that there are today.

DK: Right. Well, to take them in last-in first-out order: the biologists didn't have those problems in
1972.

EF: That's true. That's right.

DK: The human genomes, now we've got all this data, but there wasn't such data then. Certainly if
I was doing the work now, it would be a different thing. But this pairwise thing is a notion that
I have that might be way off the wall. I didn't limit it to computer scientists and X. I was
viewing it as a university as a whole, including humanities, medicine, everything. I'm saying
knowledge in the world is exploding, and there are so many things now, that trying to look at
the way a university might be 100 years from now compared to the way universities have
evolved up to this point, in the following way. Up until this point we had subjects, and a
person would identify themselves with what I call the vertices of a graph, where one vertex
would be mathematics. Another vertex would be biology. Another vertex would be computer
science, a new vertex on the block. There would be a physics vertex, and so on. Then, okay,
there was biophysics and things. There was English, and Spanish, Latin. But people identified
themselves as vertices, because these were the specialties. You could sort of live in that vertex,
and you would be able to understand most of the lectures that were given by your colleagues.
The subjects were getting bigger and bigger, but, still, we used to be able to have a computer
science colloquium every week and everybody would come and we would know. But
knowledge is growing and growing to the point where nobody can say they know all of
mathematics, certainly. But also there's also so much interdisciplinary work now, where we
see a mathematician can study the printing industry and see that some of the ideas of dynamic
programming apply to book publishing. Wow! There's interactions galore wherever you look.
You mentioned the electrical engineer who gets a Nobel Prize for medicine because he can do
CT scanning, or whatever. My model of the way the future might go is that people wouldn't
identify themselves with vertices, but rather with edges, with the connections between. Each
person is a bridge. Each person is a bridge between two other areas, and that they identify
themselves by the two sub- specialties that they happen to have a talent for. Then it's more of a
network than a group of departments. It doesn't mean that I'm a loner, but that I'm
communicating with the other people who are branches in the adjacent fields. This is the
context in which that remark came up.

EF: What you're saying is that it’s an interdisciplinary world.

DK: …world. We're going to find that most of the people we talk to are people that have one foot
in the same place than we do.

EF: Live on the edges, not in the nodes.

DK: Yeah.

EF: Don, thank you for sharing all of this with everyone. Not only everyone now, but everyone 50,

100, 200 years from now.

DK: Well, thank you for directing it all this way. I hope I can do half as well when I have to sit in
your shoes next time.

END OF INTERVIEW

