
An Interview with 1

Tony Hoare 2

ACM 1980 A.M. Turing Award Recipient 3

(Interviewer: Cliff Jones, Newcastle University) 4

At Tony’s home in Cambridge 5

November 24, 2015 6

 7
 8

 9
CJ = Cliff Jones (Interviewer) 10

 11
TH = Tony Hoare, 1980 A.M. Turing Award Recipient 12

 13
CJ: This is a video interview of Tony Hoare for the ACM Turing Award Winners project. 14

Tony received the award in 1980. My name is Cliff Jones and my aim is to suggest 15
an order that might help the audience understand Tony’s long, varied, and influential 16
career. The date today is November 24th, 2015, and we’re sitting in Tony and Jill’s 17
house in Cambridge, UK. 18

 19
Tony, I wonder if we could just start by clarifying your name. Initials ‘C. A. R.’, but 20

always ‘Tony’. 21
 22

TH: My original name with which I was baptised was Charles Antony Richard Hoare. 23
And originally my parents called me ‘Charles Antony’, but they abbreviated that 24
quite quickly to ‘Antony’. My family always called me ‘Antony’, but when I went to 25
school, I think I moved informally to ‘Tony’. And I didn’t move officially to ‘Tony’ 26
until I retired and I thought ‘Sir Tony’ would sound better than ‘Sir Antony’. 27

 28
CJ: Right. If you agree, I’d like to structure the discussion around the year 1980 when 29

you got the Turing Award. I think it would be useful for the audience to understand 30
just how much you’ve done since that award. So if I could, I’d like to start in 1980 31
and work backwards, and later on we’ll come to 1980 and work in the more obvious 32
order if that’s okay. 33

 34
TH: That’s fine. Thank you. 35

 36
CJ: So the Turing citation lists four things, not necessarily in this order – the axiomatic 37

approach; design of algorithms, specifically Quicksort; contributions to programming 38
languages in general; and operating systems constructs such as monitors. 39

 40
Let’s begin with the axiomatic approach. The key paper you wrote in 1968 I think. 41

 42
TH: That’s right. When I moved to Belfast as a professor. 43

 2

 44
CJ: Yes, we’ll come to Belfast later on. Can you, for anybody who doesn’t know, 45

describe Hoare triples? 46
 47
TH: “Hoare triples” is just a symbolic way of saying something quite simple. It’s a 48

statement about what will happen if you do something. It has three parts, as you 49
would expect from the ‘triple’. The first part is called a precondition, and that 50
begins, ‘If something or other is the case in the real world’, and the second part is the 51
program itself, which is an active verb, is that ‘If you do this, then the final stage of 52
the world after you’ve done it will satisfy the third component of the triple’, which is 53
called a post-condition. 54

 55
CJ: Now that’s what it was. Can you tell us what problem you were trying to solve when 56

you came up with the Hoare triple? 57
 58
TH: Well, I had the idea that it would be a good idea to define programming languages in 59

a way that didn’t say too much about what the computer actually did, because in 60
those days anyway all computers were doing things slightly differently, but gave 61
enough information to the user of a programming language to be able to predict 62
whether the computer would do what the programmer wanted it to do. What the 63
programmer wanted it to do was expressed as the post-condition and served as a 64
specification for the program in the middle, but very usually the program wouldn’t 65
work in all circumstances and required to be started in a state in which the 66
precondition also held. So what I was trying to do is to construct a formal proof 67
system, calling on my previous acquaintance and love of logic, which would justify a 68
formal proof, a mathematical proof that the program actually does what the 69
programmer wanted. 70

 71
CJ: Maybe you could say a bit more about the context of the work at that time. I know 72

from this famous 1969 publication in Communications of the ACM, you make very 73
generous acknowledgements to Floyd1, Naur2, van Wijngaarden3, and so on. But 74
could you say what other people were trying to do with language definitions at the 75

1 Robert W (Bob) Floyd (1936 – 2001) also won a Turing Award in 1978. He was a

pioneer in the field of program verification and his 1967 paper Assigning Meanings
to Programs (Proceedings of American Mathematical Society, Vol. 19, pp. 19–32)
was an important contribution to what later became Hoare logic.

2 Peter Naur (1928 – 2016) was a Danish computer science pioneer and also Turing

award winner.

3 Adriaan van Wijngaarden (1916 – 1987) was a Dutch mathematician and computer

scientist who was head of the Computing Department of the Mathematisch Centrum
in Amsterdam. He is widely considered to be founder of computer science in the
Netherlands

 3

time you came up with your idea? 76
 77
TH: Yes. There were two ideas of how to define a programming language current. One 78

was the denotational semantics, which attempted to describe what the meaning of the 79
program was in terms that were familiar to mathematicians – for example, using the 80
mathematical concept of a function – and the other one was an operational semantics, 81
which was more appealing to the programmer who likes to know how the computer’s 82
actually going to execute the program. I was out of sympathy with… I couldn’t 83
understand the first of them and I was out of sympathy with the second. [chuckles] 84
So I came up with this third approach which is called the axiomatic approach, which 85
has attracted quite a bit of attention. 86

 87
CJ: Well, we’ll draw a lot of parallels later on with your later work, but let’s come to that 88

later. Baden-bei-Wien, the formal language description languages conference, there 89
were a lot of papers there. None of them were using the approach or hinting at the 90
approach that you were to pioneer? 91

 92
TH: I think none of them were. I remember standing up to ask a question and using it as 93

an excuse to make a comment that I felt that one of the main advantages of a formal 94
language description language was to be able to say as little as possible, as little as 95
possible and as much as necessary of course, about the details of the language itself. 96
And I gave an example of defining the modulus of a number as being… What? 97
Sorry, I’ve forgotten. [chuckles] Anyway, let’s leave that. 98

 99
CJ: I know that you also went to the IBM Vienna Lab and heard the course, the 100

presentations on their extremely large attempt to use an operational semantics 101
approach to define PL/I. Were you on the ECMA standards committee or…? 102

 103
TH: I was on the ECMA standards committee, and the course was being run for the 104

benefit of that committee. It was my first introduction to the approach taken by that 105
laboratory, which was I think primarily operational. But they were very appreciative. 106
I actually spent the evenings during that conference writing the very first draft of the 107
axiomatic approach paper on the notepaper of the Imperial Hotel in Vienna. 108
[chuckles] I gave the manuscript to my colleagues in IBM and they were very 109
appreciative of it, but I think very rightly decided that the method was not 110
sufficiently mature shall we say to be applied immediately to PL/I. 111

 112
CJ: What was your reaction to the large definition they were writing? 113
 114
TH: Oh, withdrawal I think. Definitely I didn’t regard, as it were, literary, suitable for 115

literary reading. 116
 117
CJ: [chuckles] Right. 1969 we’ve said the paper came out. I’d like to know what you 118

feel the reaction was from the community, both short-term… I happened to be at the 119
presentation you gave in Vienna for the WG 2.2 meeting in 1969. So did people 120
immediately appreciate that the axiomatic approach was a good way forward? And 121

 4

we’ll come to longer term in a minute. 122
 123
TH: Right. I don’t know that I was so worried about impact then as we are now. 124

[chuckles] I think I was quite happy with the interest that people showed at these 125
technical committee meetings. 126

 127
CJ: Longer-term of course, this is one of your most-cited papers. I found 6,000 citations, 128

more than 6,000 citations to that one paper. 129
 130
TH: Oh. 131
 132
CJ: Do you feel that that’s an approach which is now widely followed? 133
 134
TH: I think a lot of people do know about it, and it is recognised as one of the three 135

methods of expressing the semantics of a programming language. And a lot of 136
people who were perhaps more comfortable with the operational approach did feel 137
the necessity of proving that it was consistent with the axiomatic approach in the 138
sense that everything you could prove in one system would satisfy the properties that 139
you could prove of the program in the other system. 140

 141
CJ: So in working backwards, what I wanted to do was draw out some of the practical 142

stimulus to your chosen research topics. In a paper, I guess it’s the Turing Award 143
speech, you talk about the connection between the bound checking that you built into 144
your ALGOL compiler and the idea that they were a form of assertion. How much 145
do you think that was an influence for you, that you…? 146

 147
TH: Yes. I think I’ve always been attempting to make sure that the programmer had a 148

control and understanding of what the computer was going to do when executing the 149
program. So the motto was that whatever happened could be explained in terms of 150
the programming language itself, and you didn’t have to understand anything about 151
the machine code or the structure of the computer in order to debug the program. I 152
think that’s really a very good principle. Which has not always been observed in 153
subsequent languages, but the necessary condition for it is that the subscripts on all 154
the array references must be checked every time. And indeed, modern languages are 155
following that example, perhaps without ever having heard of it of course. 156

 157
CJ: You’re of course talking here about machines that were much slower. There was an 158

overhead for checking those array bound-……that you were staying within array 159
bounds. Your customers were prepared to pay that overhead? 160

 161
TH: Maybe my customers didn’t know. But since most of the customers were academics 162

and had to use to the computer to teach students programming, I think they were 163
quite glad of it. Many years later, the company offered the customers the option of 164
building into the compiler an option for switching off the subscript or array checking, 165
and they said “no.” They knew how many errors were due to subscript errors. 166

 167

 5

CJ: Yes. We’ve not finished with the axiomatic method, but I would like to pick up on 168
one thing which your name is always associated with, which is the Quicksort 169
algorithm, and its connection to programming languages. So could you build the 170
connection for us with your ability to write the program Quicksort down when you 171
first had the idea? 172

 173
TH: Not when I first had the idea. The idea first came to me when I got interested in 174

sorting. I remember well thinking about it on my couch in my room at Moscow State 175
University. The first idea I had for doing sorting was something like bubble sort, and 176
then I thought it was a bit slow. I could calculate the… ‘It would be n2 in the length 177
of the array, so there must be a faster way.’ I did think explicitly, well, if I could 178
start off by assuming that my array was split into two parts, and all the elements of 179
one part were smaller than all of the elements in the other part, then I could tackle 180
those two problems separately. And I sat down and used the only programming 181
language I knew at the time, which was Mercury Autocode, and wrote the partition 182
algorithm, the easy, non-recursive part. And then I was faced with the problem of 183
how does one organise the calculations required to sort all the partitions that you’ve 184
left behind to sort later? I couldn’t figure that one out, but I thought there must be 185
some way of doing it. 186

 187
A year or two later when I was working for Elliotts, I came across the ALGOL 60 188
report and I read it. That was worth reading. People who have read it agree with me 189
that it was. You learnt something about programming by reading that report. It had 190
that wonderful sentence in it about recursion – ‘Any other occurrence of the function 191
designator inside the function body denotes a call of the function itself.’ ‘Recursion. 192
Ah, that’s the way.’ I sort of described it and that led to publication in the 193
Communications of the ACM of the algorithm in their algorithm section. 194

 195
CJ: You describe sitting on the couch. We’ll come back to Moscow in a while, but you 196

describe sitting on the couch. Did you have pencil and paper? How were you 197
thinking about sorting? 198

 199
TH: I had pencil and paper, yes, to write the program. That was after I got the idea of 200

course, and I don’t think I ever bothered to even write out the bubble sort algorithm. 201
 202
CJ: Is it true you had a financial wager about this algorithm? 203
 204
TH: [laughs] When I came back to England, I was offered employment by a small 205

British computer manufacturer, Elliott Brothers, and one of the first things that my 206
boss gave me to do was to write a sorting algorithm. He showed me the algorithm 207
that he wanted written. It was the now-called Shellsort, and it was quite complicated 208
and very difficult to see how fast it was going to be. But when I’d written it out and 209
delivered it back to my boss, I said, ‘I think I know a faster way of doing that.’ And 210
he said, ‘I bet you sixpence you don’t.’ Then I explained it to him and he 211
implemented it for one of the Elliott machines and found indeed it was considerably 212
faster even than his previous algorithm, which had been a merge sort. 213

 6

 214
CJ: For our audience, sixpence is how much money? [laughs] 215
 216
TH: Well, about a halfpenny in present money. 217
 218
CJ: [laughs] A very small wager. So we’ve got you at Elliotts. We’ve worked back to 219

there. 1960 to 1968? 220
 221
TH: That’s right, yes. 222
 223
CJ: After the sorting algorithm success, the next big success was the ALGOL compiler I 224

think. 225
 226
TH: Yes. 227
 228
CJ: Could you say a bit about the project? 229
 230
TH: It was a bit of a surprise. In those days, we wrote the programs that we wanted to 231

write more or less with very little management instruction, and even less checking of 232
deadlines or anything like that. I worked with Jill [nee Pym], my wife, and other 233
members of a small team. And after about a year or so, I sort of thought maybe we 234
could deliver it in another six months or so. So I told my boss that maybe we could 235
deliver it, and he was quite pleased and he started selling it, and probably increased 236
the sales of our computer quite a bit. 237

 238
Oh, that was exciting. It’s nice actually doing something that somebody finds useful, 239
provided that they come back and tell you this. If you’re a manufacturer however, 240
you deliver this large chunk of paper tape embodying 10 man-years perhaps of 241
intellectual effort, it’s like publishing a book, you don’t hear anything about it until 242
much later. 243

 244
CJ: So you’ve referred to the ALGOL description as a very valuable document. My 245

recollection is it’s a very short document as well. 246
 247
TH: Indeed. 248
 249
CJ: Which is even more impressive. 250
 251
TH: It was about 26 pages of half-size book folio format. 252
 253
CJ: But have I heard you also give credit to a course which I think was in Brighton? 254
 255
TH: Yes. 256
 257
CJ: Who were the instructors on that course and what was the content? 258
 259

 7

TH: The instructors were Edsger Dijkstra4 and Peter Landin5 and Peter Naur, Edsger and 260
Peter of course winners of the Turing Award. 261

 262
CJ: A pretty impressive team to get you up to speed on ALGOL 60. 263
 264
TH: I remember not actually doing the exercise that Peter Landin had set, but writing 265

Quicksort instead. Rather shyly I went up to the dais on which he was sitting and 266
showed it to him. He looked at it for a bit and he looked at it again, and then he said, 267
‘Peter, come over here.’ 268

 269
CJ: [laughs] Right. I’m sure they weren’t grading you, but you would have got a good 270

grade for that. 271
 272

So this leads very naturally into the topic of programming languages, which is one of 273
the things cited in the Turing Award. For those who’ve only programmed in high-274
level languages, could you describe what it was like to program for your machine, the 275
Elliott…? 276

 277
TH: 803 initially, although the main sales were on the 503, which was a faster machine 278

which was built a little later. Programming in machine code was writing a lot of 279
decimal and octal numbers on a piece of paper. [chuckles] What else can I say? The 280
instruction code was relatively simple for that machine, and it was great fun to try 281
and find the shortest sequence of instructions that would carry out my will on the 282
computer with as short a time as possible. 283

 284
CJ: How about design aids? So yes, you had to write this sequence of instructions, but 285

did you use anything like flowcharts to develop the design? 286
 287
TH: I didn’t use flowcharts I don’t think. There were flowchart templates that perhaps 288

some people used. But I think on the whole the experience was that they were only 289
used in cases that the management insisted on it. But not in my company they didn’t. 290
Our managers didn’t do that. 291

 292
CJ: We haven’t mentioned one very important member of your team – Jill, now your 293

wife, actually worked with you on the ALGOL project. 294
 295

4 Edsger Wybe Dijkstra (1930 – 2002) was a very influential Dutch computer scientist

who made many contributions to both practical and theoretical aspects of the
discipline.

5 Peter John Landin (1930 - 2009) was a British computer scientist who made many

important contributions to theoretical aspects of computer science. The final years of
his career was spent at Queen Mary College, University of London. The computer
science building there was named the Peter Landin Building in his honour.

 8

TH: Indeed. She did nearly all the detailed programming of it. My duty was to write in 296
ALGOL itself a sort of outline of the structure of the compiler as a whole, and I left 297
nearly all the rest of the work to them. 298

 299
CJ: So programming languages. The ALGOL 60 compiler while at Elliott, then a long 300

series of other contributions to programming languages. Could you say a bit about 301
ALGOL W and how that arose? 302

 303
TH: Yes. In 1962 I think, I was invited to become a member of the ALGOL committee 304

at IFIP WG 2.1. The committee spent some time working on revisions/corrections to 305
the original ALGOL 60 report and produced a new report in 1962. Then they called 306
for ideas to put into the next version of ALGOL, because in those days it was 307
expected, like machine architectures, that languages would change every few years. 308
So I made a number of language feature proposals, which were published in the 309
ALGOL Bulletin, and that caused me to be invited. I was quite an active member at 310
the Princeton meeting of WG 2.2, at which they discussed the features and gave to 311
me and Niklaus Wirth the duty of writing up the agreements of the meeting in a 312
format that would make it suitable as a definition of a new programming language. 313

 314
CJ: And that did not become ALGOL 68. 315
 316
TH: [laughs] Yes. 317
 318
CJ: Are you prepared to tell the story about the schism and the transition from Working 319

Group 2.1 to 2.3? 320
 321
TH: Well, very briefly, the report was produced and presented at the next meeting. I 322

think at Saint-Pierre it was, Saint-Pierre-de-Chartreuse. And the boss of the 323
mathematical centre in Amsterdam, Aad van Wijngaarden whom you know well, 324
during that period had discovered a new way of defining the syntax of a 325
programming language which he wanted to try out on this new language. He spent 326
some time explaining it. I thought it was unnecessarily complicated. But he 327
persuaded the committee to give him a go and he was charged with producing the 328
next draft, which he eventually did. It went through many revisions and culminated 329
in the language ALGOL 68. 330

 331
CJ: And you were not a fan of ALGOL 68. 332
 333
TH: I’m afraid the final meeting in 1968 at which the committee discussed the draft and 334

approved it, I was one of the signatories of a minority report, which in the words of 335
Edsger Dijkstra was ‘We have to regard, as a clear description of the methods of 336
programming, that this report is a failure.’ [laughs] He didn’t mince his words. 337

 338
CJ: And a number of you left or resigned from 2.1 and formed a new working group. 339
 340
TH: Yes. I wasn’t one of those who either resigned or formed a new working group. I 341

 9

wasn’t a founding member of it. And I did stay on in the ALGOL committee to look 342
after the interests of ALGOL 60 at a time when the committee was mainly concerned 343
with removing – what do you call them? – ambiguities and something or other of 344
ALGOL 68. When that task completed – it wasn’t a very onerous task – that was 345
when I resigned, and at the same time I was invited to join the WG 2.3 on 346
programming methodology. 347

 348
CJ: Yes. Also on programming languages, a very influential book, the Structured 349

Programming6 book. I fear structured programming was somewhat oversimplified 350
by some people, but the content of that book has been very influential. 351

 352
TH: Yes. The name ‘structured programming’ I think was taken from the people you’re 353

referring to, namely your own employers, IBM, intended to be equated with just 354
avoiding gotos. But the book, I think we interpreted, the authors of the book 355
interpreted it as applying much more to the overall architectural structure of a 356
program rather than the details of the way in which a flowchart has been encoded in a 357
linear programming language. 358

 359
CJ: And a paper I love, ‘Hints on Programming Language Design’, which I think has also 360

been very influential although perhaps should be even more widely read, that was for 361
the first POPL conference I think, Principles of Programming Languages. 362

 363
TH: I think it was, yes. 364
 365
CJ: But it wasn’t in the proceedings. Were you late delivering, or…? 366
 367
TH: Oh. I don’t know that proceedings were considered all that important in those days. 368

I think it would have been late. I certainly had produced it within six months as a 369
report of Stanford University, and that’s presumably its ending, resting place. 370

 371
CJ: That’s the question I have, yes. 372
 373
TH: Yes, yes. 374
 375
CJ: And then another very big project in which I knew you were involved in early on was 376

the Ada project from the US Department of Defense. 377
 378
TH: Yes. 379
 380
CJ: Could you say a bit about that? 381
 382
TH: Well, I happened to be in the United States on sabbatical in the previous year I think 383

6 Structured Programming: O.-J. Dahl, E.W. Dijkstra, C.A.R. Hoar; Academic Press,

London, 1972.

 10

it was, and I took on a consultancy with the Air Force to write a report on their new 384
programming language, which was called JOVIAL, JOVIAL J-3. I wrote a report on 385
its various features, which again I’m afraid wasn’t very complimentary. [chuckles] 386
But the report was of course ignored and so was the language. The Department of 387
Defense decided to start work on a new language, which eventually became called 388
Ada, and invited four teams to submit draft proposals for the language without laying 389
down very many conditions about what the language should contain. And I was 390
asked to serve as a consultant to one of the teams, the one that worked at… it was 391
SRI at that time. 392

 393
So I spent several trips to Menlo Park to advise them on the evolution of this 394
language. Because like so many language designs, it starts small and evolves, and 395
the taskmaster, the person who was masterminding the project as a whole, kept 396
adding more features which his clients, who were of course the armed services, 397
required in order to gain acceptance of the new language. But the SRI proposal was 398
eventually rejected and the successful proposal still required quite a bit of 399
development, so I served as a consultant on that as well. 400

 401
CJ: You say there were not very detailed requirements on what had to be in the language, 402

but linking back to axiomatic basis, there was one very interesting requirement on the 403
specification of the language. 404

 405
TH: I can’t… 406
 407
CJ: I believe I’m correct. I haven’t gone back and looked this up. But I thought the iron-408

man requirements – have I got the right phrase? – said that any language had to be 409
specified either in your axiomatic style or in the operational style. 410

 411
TH: I don’t recall that, I’m afraid. Certainly I don’t think any of them were in the end. I 412

don’t think I was giving advice on how to draft an axiomatic language construction. 413
 414
CJ: So back to Elliotts again, but I’d like to postpone the operating system work till when 415

we talk about CCS later. Could you explain how you came to be working for a 416
computing company? Because as we’ll learn later on, your university degree 417
wasn’t… Well, there were no university degrees in computing then, but how did you 418
get to your first job being at Elliotts? 419

 420
TH: In 1960 when I came back from Moscow State University, just before I came back, 421

my uncle, who was the general secretary of a British Scientific Instrument 422
Manufacturers Association, he was organising an exhibition at which his 423
manufacturers would exhibit their products. And he invited me to serve as interpreter 424
to the exhibitors and promised to pay the princely fee of £40. [laughs] So I actually 425
cut short a holiday and went to do the interpretation and found there was a computer 426
being exhibited by Elliott Brothers, my subsequent employers. I spent most of my 427
time actually on that stand, although I did do some other interpretation of lectures. 428

 429

 11

CJ: So perhaps you could explain to our audience how and why you knew Russian? 430
 431
TH: When I finished my undergraduate degree, I got a job… sorry, I had to do national 432

service. I applied therefore, partly based on a connection with my uncle who was a 433
captain in the Royal Navy – in those days, these things apparently used to count – 434
applied to join a course and learn Russian. They accepted me on the basis of my 435
qualifications no doubt in Latin and Greek, and so I went up to Crail to study Russian 436
in a military camp and later passed the examination to study it at the University of 437
London, a branch of the School of Slavonic Studies. 438

 439
CJ: So at that time, one was conscripted for two years to be in one of the services. 440
 441
TH: Two years, that’s right. 442
 443
CJ: How much of your time did you actually spend in army uniform doing normal army 444

things, and how much time did you spend learning Russian? 445
 446
TH: Oh. Well, on every vacation – I think it was a month’s vacation three times a year – 447

we would spend two weeks in a camp and learn a bit of drill and learn a bit about 448
seagoing perhaps, which maybe was just as well because part of our course in the end 449
was to learn technical Russian to describe the parts of a ship. [chuckles] 450

 451
CJ: Right. But I know from being in Saint Petersburg with you that you still speak fluent 452

Russian. 453
 454
TH: I used to go back to Russia fairly frequently to begin with to take Elliott computers 455

to Moscow and exhibit them, and served on the stand as before to translate and 456
generally to make things a bit easier for the exhibitors in a strange country with a 457
strange language and so on. 458

 459
CJ: So back with Elliott, initially your title was probably ‘Programmer’? 460
 461
TH: Yes. 462
 463
CJ: And from there you progressed to…? 464
 465
TH: Senior Programmer, Chief Programmer, Chief Engineer, and finally I moved out of 466

the line of management and became a Senior Researcher I think. 467
 468
CJ: How big was the research activity within Elliott at that time? 469
 470
TH: Oh, it must have been quite small. Most of it was hardware research. But I met up 471

with Mike Melliar-Smith, who was later the leader of the SRI submission for the 472
Department of Defense language. He was my main colleague there and we were 473
commissioned to design a new version… sorry, a new larger and faster version of a 474
range computers which the company was manufacturing. 475

 12

 476
CJ: And then for our audience who have never heard of Elliotts, can you describe the 477

series of takeovers that led to your departure from the company? 478
 479
TH: Well, yes. The machine that we were designing never saw the light of day because 480

the company was taken over in a very friendly way by the English Electric Company, 481
and so I transferred my allegiance to the English Electric research group, who were 482
working on a new design. And then English Electric were taken over by the ICL, 483
which was a conglomerate of all the remaining computer companies in Britain. 484

 485
I suppose I felt a bit sidelined, and I was offered… sorry, I was asked in the way that 486
academics have whether I would allow my name to go forward for consideration for 487
appointment as a chair in Manchester. I had received a similar offer in Oslo actually 488
for the post that Dahl, also a Turing Award winner, eventually occupied. And it just 489
tickled me because I’d always felt I wanted to be an academic, but I didn’t know very 490
much about the academic scene and I thought maybe a job with the government 491
computer centre in Manchester would give me better contact with academic work in 492
computing in Britain. 493

 494
Was I right? No. [laughs] 495

 496
CJ: [laughs] That’s another issue. This is the so-called National Computing Centre… 497
 498
TH: That’s right. 499
 500
CJ: …that was in Manchester. You didn’t stay there very long though, I think. 501
 502
TH: No. That was one of the more shameful episodes in my career. 503
 504
CJ: No shame at all. You were offered a very… 505
 506
TH: I think it was three months I was there, and half of it I spent under notice. I was the 507

one who resigned because it occurred to me rather sensibly and rather late that maybe 508
the best way of learning about the academic scene was to go for a few interviews for 509
posts. So I rather tentatively drafted a letter of application and sort of wondered 510
whether I would make it in time to catch the post. I thought, ‘Well, if I can catch the 511
post, I’ll do it.’ And I did. I went for an interview. To my intense surprise, I was 512
chosen for the post. 513

 514
CJ: Do you know what the competition was like at Queen’s University Belfast? Were 515

they interviewing many people or were you the only person considered good enough 516
to be interviewed? 517

 518
TH: No, they were interviewing several. In fact, I think I knew the two other… No, I 519

knew one of the other applicants who was an academic… he was a member of the 520
university already. No, I don’t know that there was a great deal of competition. 521

 13

 522
CJ: So your first position in a university is as a full professor of…? 523
 524
TH: Indeed, yes, yes. It’s quite an experience coming in at the top as it were. 525
 526
CJ: Can you describe the other transitions – what it was like to work in academic 527

decision-making as opposed to working in the industrial environment? 528
 529
TH: Yes. I was a bit shocked when one of the first things I had to do when I arrived in 530

October was to decide something about the syllabuses for the next following year’s 531
courses. We never thought that far ahead in industry. The phases of industry were 532
quite simple. At the beginning of the budgetary year, you expanded a bit, and at the 533
end of the budgetary year, you contracted a bit, and that was as far ahead as one 534
could possibly look. But that particular… 535

 536
The other thing was getting used to academic politics, which is quite different from 537
industrial politics. I realised that all professors were equal under the vice-chancellor, 538
but you have to understand which professors are more equal than the other ones. 539

 540
CJ: [laughs] And the ways to influence decisions. 541
 542
TH: Well, it was pretty unpleasant for the first two years actually because I was also 543

director of the computing laboratory, which I took quite seriously. The manager of 544
the computing laboratory and the professor of medical statistics, who was chairman 545
of the computing services committee, attempted to dislodge me, which was really 546
quite unpleasant. In the end, I went to the vice-chancellor and said, ‘Am I the 547
director or am I not the director?’ He said, ‘You are the director.’ So I explained the 548
problem. He said he looked into it and he came back with a right decision – I was 549
not the director. That was a great… 550

 551
CJ: A great relief. 552
 553
TH: It was a great relief. And the unsuccessful applicant for the chair made a very good 554

director after me. 555
 556
CJ: You were I think in Belfast from 1968 to 1978. 557
 558
TH: ’77 I think. 559
 560
CJ: ’77, sorry. This was of course a time of troubles in Belfast, in Northern Ireland. Can 561

you talk a bit about what effect that had on you personally and on the family? 562
 563
TH: Well, yes, of course it had quite a strong effect. To begin with, it seemed rather 564

distant and was over the other side of the province in Londonderry. But it moved to 565
Belfast and it moved to the areas that you would expect in Belfast – the Falls Road 566
and Shankill Road. But it did go on getting worse year by year until about 1972, and 567

 14

so we were always wondering whether we’d made the right choice and when we 568
would be running for our lives. 569

 570
But it was such a friendly place, such a lovely place to be, and the job and my 571
colleagues were so wonderful that we really enjoyed it. Our neighbours. We lived in 572
a road a bit like Storey’s Way with large houses and extremely friendly neighbours, 573
still friends. And the only time that Jill was really worried was when – should I say 574
this? – I was offered another post in London. Sorry, I was told that I had been 575
appointed to another post and would I come and talk to the vice-chancellor about it? 576
And I probably would not have gone unless I’d been invited to be the professor. So I 577
went for an interview and I turned them down. And Jill says that was the only time 578
that she was really worried when I was in Belfast that she might have to come back 579
to London. 580

 581
CJ: Coming back to the axiomatic basis theme, while you were in Belfast, you wrote the 582

FIND paper7. This brings neatly together your sorting thing and your axiomatic basis 583
ideas. 584

 585
TH: Yes. 586
 587
CJ: That paper had an interesting history. 588
 589
TH: Yes. I recounted that history at the POPL conference a little while ago, that I 590

submitted it and had it refereed. Were you one of the referees? [chuckles] 591
 592
CJ: Yes. Yes. [laughs] 593
 594
TH: Being personal. Then I looked through it again to see how to put the referees’ 595

comments in and I couldn’t understand it. Well, at least I was finding great 596
difficulties in following the details, because I was trying to prove absence of 597
overflow as well, and I thought, ‘This doesn’t present the use of the axiomatic 598
method for proof in a very good light. So I’ll simplify it. I’ll leave out the problem 599
of overflow.’ So I rewrote it and resubmitted it and it was published all right. 600

 601
One member of the audience at the POPL conference pointed out that I had been 602
unscientific in retracting the paper merely because it was unattractive. The business 603
of a scientist is to present it how it is. I should have kept it in. And it hadn’t 604
occurred to me that I had done any wrong and now I agree that I had. 605

 606
CJ: That’s an interesting insight. 607
 608
TH: Yes, yes. 609
 610

7 Hoare, C.A.R., “Proof of a Program FIND,” Communications of the ACM, Vol. 14,

1971, pp.39-45

 15

CJ: To me, the transition was magic because axiomatic… the original 1969 paper is about 611
proving programs. You made the transition in the FIND paper to a development 612
method for programs, and that seems to me crucial for what has happened since. 613

 614
TH: Yes, I suppose I did. Yes, thank you. I hadn’t thought about it that way, at least not 615

for a long time. 616
 617
CJ: So I know personally you have a huge family of PhDs – children, grandchildren, 618

great-grandchildren of your supervision. But in Belfast, you were supervising a PhD 619
student, some PhD students without having had one [a Doctoral Degree] yourself. 620
How did that feel? 621

 622
TH: Oh, I don’t think I felt the lack of it, no. I sort of feel and I still say that Quicksort 623

was a good substitute for doing a PhD. 624
 625
CJ: Tony, you next moved to Oxford. You were appointed to a chair at one of the most 626

prestigious universities in the world. 1977. 1977? 627
 628
TH: ’77 is when I arrived, yes. 629
 630
CJ: And we’ll say later on you stayed until 1999. Before we move to the technical stuff, 631

Oxford was your alma mater – we’ll talk about that later on – but you went to 632
Wolfson College when you went to Oxford. That’s not a traditional college. 633

 634
TH: That’s true. So it’s a graduate college, a fairly recent foundation. But as far as I was 635

concerned, it was the right college for me because I was still somewhat in awe of the 636
traditional colleges and the senior common rooms and so on. Wolfson was quite 637
democratic and very friendly. 638

 639
CJ: And some very interesting people there as well, people like Robin Gandy8. 640
 641
TH: Yes, indeed. 642
 643
CJ: So one of the first things I’d like to pick up there is CSP, communicating… 644
 645
TH: Sequential processes. 646
 647
CJ: Thank you. [laughs] I didn’t want to get it wrong. Perhaps again we could look at 648

the context and switch back to Elliott. You’re very frank about the operating system 649
project at Elliott not being as successful as the ALGOL compiler. 650

 651
TH: Indeed, yes. 652

8 Robin Oliver Gandy (1919 –1995) was a British mathematician. Robin’s PhD

supervisor was Alan Turing at the University of Cambridge.

 16

 653
CJ: Could you say a bit more about that? 654
 655
TH: Yes. We realised that the rudimentary operating systems that were available on our 656

existing computers would not be adequate for use of a more expensive and powerful 657
machine. So I took it upon myself I suppose – I was boss of the programming group 658
then – to design an operating system, about which I knew nothing at all. So I read a 659
few things, learnt about code words for example, what’s now called virtual memory, 660
and we tried our best to do something. But in the end, it turned out the system could 661
not be delivered because it was too slow. It had used a virtual memory and caused 662
everything to thrash. So the project was cancelled and nothing was delivered and the 663
entire work of my department for the last two years was consigned to the bin, which 664
was a bit depressing. 665

 666
CJ: The machines at that time had tiny stores. 667
 668
TH: Yes, and that machine that we had had a particularly tiny store of only 8,000 words, 669

about four times that many bytes, and it had no capability for extending the main 670
store beyond that limit, because that was the limit of addressing of the instruction 671
code. Whereas other companies that got into the same trouble, including IBM I may 672
say, were able to get around the difficulty by free gifts of hardware. We couldn’t 673
even give it away. 674

 675
CJ: And this led to a long succession of contributions to how to organise concurrency, 676

parallelism, and so on. Could you say a few words about monitors, for example? 677
 678
TH: Yes. That was the result of a discovery of a way proving correctness of data 679

representations. The monitor was just a representation of shared data, and otherwise 680
had the same structure as an implementation of a data representation. That’s I think 681
what gave me the idea. Edsger Dijkstra was also very interested, because he had 682
actually written a successful operating system for a computer of similar size and 683
application in Amsterdam. So I organised in Belfast a meeting of people interested 684
in operating systems, which led to the publication of a book called Operating System 685
Techniques, and I wrote the introduction and one of the chapters. 686

 687
We discussed… Per Brinch Hansen was there and he picked up on this idea that the 688
updates to shared data should be all written and understood in a single place rather 689
than being scattered around, which was the case in my previous proposal for 690
conditional critical regions, which is also mentioned in the operating systems book. 691
Per Brinch Hansen had the opportunity to publish the idea in the Communications of 692
the ACM before I thought of doing so, and I’m afraid I wrote a follow-up of the same 693
idea with very largely the same central content with a few details changed rather in 694
the spirit of competition, I’m afraid. People for a number of a years were concerned 695
about which of us had really invented it. Per knew exactly how it had come – we had 696
both invented it – and he wrote a letter to me explaining exactly the order of 697
communications and discussions that we’d had. But certainly the paper was I think 698

 17

somewhat influential and made me feel that I had really… that was the way I should 699
have done it. 700

 701
CJ: You mentioned Edsger Dijkstra in connection with the operating system. I was going 702

to ask about guarded commands9 and how much you feel the guarded command idea 703
influenced the development of CSP as a language. 704

 705
TH: Well, the guarded command itself was taken over directly, and I think it made… it 706

turned out indeed when we formalised the semantics of CSP that was exactly the way 707
to modularise the implicit conditional. I felt it was very important that if a process in 708
parallel attempts to test whether an output is available for further input, it should do 709
so with a command that at least carried the risk that the output would take place 710
simultaneously, because I didn’t want anybody testing the availability of something 711
and then not using it when you found it was available. That seems to be a gratuitous 712
way of introducing non-determinacy into the most critical part of a software system, 713
which is of course the interfaces between the modules. I wanted the interfaces to be 714
determinate, and any non-determinism should be expressed independently within the 715
individual threads where we could manage it locally. 716

 717
So [Edsger Dijkstra was] very influential I think. I got the syntax from him. I don’t 718
think I would have dared to make such a strange syntax if Edsger hadn’t paved the 719
way with his beautiful guarded command. 720

 721
CJ: Well, I think you’d have dared most things, because we haven’t come to the most 722

radical departure in CSP, the complete abolition of shared state. 723
 724
TH: Yes. This was at the time dictated by the structure of the implementing 725

microprocessors, where the microprocessors were very cheap and fast but the sharing 726
of memory between the microprocessors was expensive and slow. So one could get 727
away with not sharing state because it fitted the architecture of the implementation - 728
could be very fast. 729

 730
The situation is somewhat reversed at the moment, as you understand, which makes 731

shared memory more relevant. And I’m following developments and I hope I have 732
something to contribute to the development of shared memory programming in the 733
future. But I think the input/output will come back. People will realise the value of 734
not sharing memory, particularly in the light of the security considerations, where 735
shared memory is obviously offering a much broader front for attack by malicious 736
software. 737

 738
CJ: But it was still a radical departure. Did you hesitate? I mean you’d made your own 739

9 Edsger Dijkstra introduced the concept of guarded commands as a way of making it

easier to prove the correctness of programs, using Hoare logic, before the program is
written in a usable programming language.

 18

contributions to shared variable concurrency. Did you hesitate for long to say, 740
‘There is no shared state between my processes’? 741

 742
TH: No. [laughs] 743
 744
CJ: [laughs] Good. 745
 746
TH: That was the basis of the whole thing. 747
 748
CJ: In connection with CSP, let’s mention Bill Roscoe and Steve Brookes, who were two 749

extremely important PhD students you had at that time. Can you describe the 750
collaboration with Bill and Steve? 751

 752
TH: I can describe aspects of it, I suppose. I had written a paper on CSP and published it 753

in the Communications of the ACM, in the standard way/practice of the time, as an 754
informal description illustrated by a great many simple but obviously seminal 755
examples. But in fact one of the reasons why I wanted to move to Oxford was to 756
learn the technology of giving a formal definition to a programming language from 757
Joe Stoy and Dana Scott10 in order to be able to redress the deficiency and make a 758
formal model. I realised, but I was wanting to explore yet another method of 759
defining the semantics of a programming language, which is the algebraic method. 760
So I asked them to tell me what the algebra of this language was going to be, and 761
they came back and said, ‘Well, what do you want it to be?’ [laughs] So that might 762
have led to an impasse. But I think we realised, we must have realised that the way 763
out of it was to do a denotational semantics of the language, and I worked with Bill 764
Roscoe on that, and Steve was working on it too I think. Of course they’ve both 765
made/done far more valuable contributions to CSP than I have now, and I’d like this 766
opportunity of recognising that fact. 767

 768
CJ: Seminal is important. Influential is another thing. 769
 770
Let’s move on to another major influence from CSP. There was the occam language and 771

its realisation as the transputer, a physical chip. Can you talk a bit about how that 772
came about? 773

 774
TH: Yes. The founder of a startup company in Britain, Iann Barron, had read my paper, 775

the first CSP paper, in the Communications, and he realised that he wanted to make a 776
computer that would execute that programming language. For years, I’d been saying 777
and Dijkstra had been saying that machines should be designed to implement the 778
programming languages that make programming easy. And here was my opportunity 779
and they offered me a consultancy, in which I was to advise on the development of 780
the language and any hardware implications that I could think of. 781

 782
CJ: And that led to a product which… I don’t know how many transputers were built, 783

10 Dana Scott is the recipient of the 1976 Turing Award

 19

how many transputer chips were built, but it was a very large number. 784
 785
TH: Well, I think until the ARM was produced, it was Britain’s biggest-selling computer. 786

And longest lasting. The actual architecture continued to be made for many years 787
thereafter, and in the end it was selling something like two million a year. Which by 788
present standards is very, very little, but by previous standards was… The computer 789
that I spent most of my time working on for Elliotts, we only ever sold 200, and they 790
were delivered at sort of once a month [actually once a week]. [chuckles] 791

 792
CJ: And that led to one of the Queen’s University industrial awards I believe. 793
 794
TH: Yes. Well, that was the work done by Bill Roscoe actually in the formal verification 795

of the hardware design for the floating-point unit. That was the first I think published 796
case of an error detected in a hardware design. Fortunately for the company, it was 797
detected before the chip was put into production. A much bigger company, as you 798
know, Intel, a few years later came across a similar error after the computer had been 799
delivered. 800

 801
CJ: And cost them a great deal of money. 802
 803
TH: Well, I think they put aside half a billion dollars, but I don’t know that they actually 804

spent them. A lot of people aren’t terribly interested in correctness, you know. 805
You’ve noticed, I think, yes. [chuckles] 806

 807
CJ: Another major project from the Oxford time, which we’ve recently had a 808

retrospective conference about, was the ProCoS project. Could you describe the 809
vision of that project? 810

 811
TH: The vision of the ProCoS project was set by our friends in Austin, Texas, the 812

inventors of the ACL2 system and its predecessor. They had done a project to 813
formally verify and to get a machine-checked verification for the correctness of the 814
hardware and software for admittedly not an existing chip but a potentially viable 815
chip design, which was successful. I wanted to reproduce that technology in Europe. 816
So that was the initial inspiration, but I was most interested in the verification of the 817
consistency of the various tools which they verified – the assembly language for the 818
computer, the verification condition generator, as well as the hardware system and 819
the operating system. I felt – wrongly I believe now – that the technology of Boyer 820
and Moore’s tool was not capable of doing structural proofs of that kind, so we did it 821
all manually in the project and learnt a lot from it. But no particular deliverable 822
product I say, except that the people who worked on it are still around and they’re 823
still contributing to the German verification efforts, at the time which more or less 824
might otherwise have been rather diminished. 825

 826
CJ: Yes. You corrected me. You corrected my omission. This was of course a 827

European-wide project funded by the European Union with partners in Germany 828
and… 829

 20

 830
TH: Denmark. 831
 832
CJ: And Denmark, yes. Another line which began during the Oxford time was the 833

Unifying Theories of Programming with your colleague or visitor He Jifeng. Would 834
you like to say a few words about the objectives? I think we’ll come back to it when 835
we talk about Kleene algebras later on, but… 836

 837
TH: The goal of Unifying Theories of course is one that I got from the current efforts by 838

physicists to unify the theories of the four forces. I realised that there were more 839
theories out in the published literature than any one person could comfortably read in 840
a lifetime, and wanted therefore to find some way of unifying them in the scientific 841
sense, that the unified theory would be a generalisation of the other theories but 842
would not supersede them. One doesn’t wish to create an antagonism that you’re 843
trying to supersede solutions which have been developed very often to deal with 844
particular application areas and particular system architectures, and which are not 845
invalidated by a general theory which shall we say is instantiated by no application 846
and no architecture. Which is what we were looking for actually. [chuckles] It’s 847
nice to be a theoretician. 848

 849
CJ: Could you say a few words about collaboration? People read your final papers and 850

think these are such gems they must come uncut directly from your pen. 851
 852
TH: No. [laughs] 853
 854
CJ: I happen to know quite a few drafts. 855
 856
TH: Well, I did confess to that in the Essays in Computer Science. Yes, I regard writing 857

a specification or writing an article as the first test of a theoretical idea, that one 858
needs to find a way of expressing it that sort of makes it seem inevitable, that there 859
couldn’t be a better way of describing this particular phenomenon, and so carry the 860
reader with what might otherwise seem to be a series of arbitrary definitions through 861
to the place where the punch line could be delivered. And I’m still doing it, I’m 862
afraid. 863

 864
CJ: So Oxford, major university. When you went there, the department was tiny. 865
 866
TH: Yes. There was me and Joe Stoy, and two programmers. 867
 868
CJ: And many practical problems. Can you talk about growing the MSc, moving the 869

department from one building to another, and all of the things that you had to attend 870
to as well as your research? 871

 872
TH: I think you just about summarised it in the terms best appropriate. [chuckles] Yes. 873

Setting up anything new at Oxford at that time was very difficult, and I was nearly all 874
the time a member of the Faculty of Mathematics. I had been a member of the 875

 21

Faculty of Science in Belfast and had learnt fairly quickly and exploited my 876
knowledge of how to influence that committee to make a decision in my favour, and 877
eventually learned how to do it pretty well so that I could predict what was going to 878
be passed and really avoid wasting time on something that is not likely to actually 879
pass muster. 880

 881
When I got to Oxford, everything was turned on its head. In Belfast, one can make 882
an argument based, for example, on the public perception. ‘What would the public 883
think if they knew that you were doing this sort of thing?’ Or you could base it on 884
the potential benefits for the application/exploitation of the research. These 885
arguments carry no weight at all in the Faculty of Mathematics at that time. Starting 886
up a new course was something that the university was able to contemplate sort of – I 887
exaggerate slightly – once every decade. You know, that was fast enough. However, 888
there was a predecessor. The Department of Material Science had had an even more 889
spectacular rate of growth for a number of years and they knew how to do it, but they 890
were in a different faculty – Natural Sciences, which was more used to this kind of 891
thing. I was in the Faculty of Mathematics. 892

 893
And then Mrs Thatcher – bless her for this at least – made an offer of money to found 894
new posts. The first one was associated with the graduate course that we wanted to 895
set up, and the next four were associated with an undergraduate course which I then 896
wanted to set up, a joint degree course with mathematics. I was very pleased to be in 897
a mathematics faculty because I knew that mathematical talent was the way to recruit 898
good programmers, good computer scientists. And of course Bill Roscoe and Steve 899
Brookes were a case in point. But then we got additional, slightly lesser numbers of 900
outside money to support posts to set up new degrees, because no politician wants to 901
support something that already exists, and therefore you need to set up a new degree 902
if you wanted to expand. 903
 904
So the number of new degrees I started in Oxford must… I don’t know. The record 905
probably still stands. Hope so, hope so. Because it’s not really much fun. 906

 907
CJ: And of course the college system, which is so valuable for undergraduates in Oxford, 908

acted as a brake in the sense that you had to get the buy-in of all of the colleges. 909
 910
TH: Yes. Every post that is offered by the university is a joint post, a joint appointment 911

with a college, and the college, they’re mostly fairly traditional colleges teaching 912
fairly traditional subjects. And the only reason why the colleges were willing to 913
accept a new subject was because Mrs Thatcher – bless her for this too – cut the 914
funding of the universities and restricted the number of places universities were 915
allowed to take, and each of the posts that were associated with the subsequent 916
generosity had 10 college places associated with it. So it was just the right bribe to 917
get the foot into the door. But there’s no… [laughs] there are problems with dealing 918
with colleges as well, as you know. Not with Wolfson but the undergraduate 919
colleges. 920

 921

 22

CJ: And eventually ‘retirement’ – ‘retirement’ in quotes – came along from Oxford in 922
1999? 923

 924
TH: That’s right. I reached the standard age limit for retirement at the university at that 925

time. 926
 927
CJ: And we had a very nice conference to mark the end of your time in Oxford I 928

remember. A lot of people might have stopped work at that time. You instead… 929
 930
TH: I got an offer from the director of the research laboratory just being set up in 931

Cambridge by Microsoft. 932
 933
CJ: Cambridge, UK. 934
 935
TH: Cambridge, UK. And the director, Roger Needham, offered me a post. He’d offered 936

me a post two years previously, but I thought I was needed in Oxford at that time 937
still. I think maybe I was wrong. My last two years weren’t very productive after 938
Jifeng left. So I took it. Well, I spent a half-year sabbatical up in Cambridge to test 939
the waters and brought Jill with me of course, because she would have to agree. We 940
both liked the place. And when I heard from the founder of the Microsoft Research 941
Laboratory, the principles under which the laboratory was founded were to employ 942
the best people and give them their heads, let them do the research that they felt was 943
important. The only thing that he did require was that the recruits should have fire in 944
their belly and want to change the world. Maybe I did. 945

 946
CJ: So can you describe how you saw Microsoft? You’d been in industry in the UK early 947

on. You now joined the largest software company in the world. Did you feel it was 948
ripe for exploiting more formal methods? Did you feel that the methods they were 949
using were adequate? I’m thinking of a famous paper of yours. 950

 951
TH: [laughs] Well, when I wrote the axiomatic method paper, I thought that the topic of 952

verification of programs using the axiomatic method would not be of interest to 953
industry for a number of years. And during the time it is not of interest to the 954
industry, it was appropriate for academic research, because industry was obviously 955
going to have far much more money than a university to pursue the research, and 956
therefore the sensible academic will withdraw if the industry’s looking after the field. 957
I wanted to see whether that prediction was correct. And indeed it was. Microsoft 958
was not using formal methods, not for several years. But when they came to use it 959
from necessity, not for the reasons that I had myself predicted – it was that in the end 960
some error would cause loss of human life perhaps – but because of the virus, which 961
I’d never predicted, nor had Microsoft. So they turned to an element of formal 962
methods, the analysis of programs, as a method of countering the threat of the virus. 963
I believe that human evolution was driven in much the same way, actually. 964

 965
CJ: You’ve already hinted at this, but would you like to say a bit more about the research 966

ethos, the ease of getting people with fire in their belly issuing their own ideas in an 967

 23

environment like an industrial research lab, versus in universities as you last worked 968
in them or even as you know them today? 969

 970
TH: Well, the thing that worked well in the universities is that the universities were able 971

to collect teams to undertake projects which were larger than a single theorist could 972
match. And this worked very well, very well indeed. People did pull together and 973
produce and demonstrate ideas to the development organisation in Microsoft, many 974
of which found their way into Microsoft products. And that sort of prospect of 975
eventual delivery was what motivated the research and motivated the collaboration. 976
University research is much more fragmented because the university’s going to have 977
a very small team working in any particular area of research, and the needs of 978
teaching require that even those are diversified. Therefore most collaborations in 979
universities at the level of staffing that we then enjoyed were between universities, 980
which is quite an overhead. 981

 982
Building teams of theorists is actually very much more difficult than teams of 983
engineers. Much more competitive. There are no agreed criteria as to how you judge 984
between two theories if all that you’re producing is theories. You need some form of 985
experimental use of a theory in order to make that choice, and the project that makes 986
a theory useable, that is a tool that enables ordinary programmers to take advantage 987
of the theories, is a multi man-year project and takes many, perhaps 15 years even to 988
mature after the originators have put in a lot of work on it. It doesn’t really recruit a 989
productive and reactive user base for up to 15 years. So you have to be very brave to 990
embark on a project like that. 991

 992
CJ: Well, bravery’s never been lacking. Can we come right up to date on your own 993

research? And I don’t expect in this interview to go through the full detail of Kleene 994
algebras, but could you build the connections between what you are trying to do now 995
with the algebraic approach, what you were trying to do in Unifying Theories, and 996
what you were trying to do in axiomatic basis? 997

 998
TH: Well, yes. Starting with the axiomatic basis, the first part of the axiomatic basis used 999

an algebraic approach to illustrate how you could axiomatise a branch of arithmetic, 1000
and you could give different axiomatisations to different kinds of arithmetic, which at 1001
that time were an option even in the hardware of the computer. You could tune your 1002
axioms to describe exactly the kinds of binary arithmetic and sign plus modulus 1003
arithmetic that were fashionable at that time. And if I’d maintained that tradition, 1004
which I got by looking at standard algebra books in mathematics, I would come 1005
about with the idea of presenting the axioms as equations in an algebraic form rather 1006
than as proof rules in the form of Hoare triples. 1007

 1008
It was only a whisker’s breadth as it were. I just did not get the right idea at the right 1009
time. Even when I was writing the book on Unifying Theories, what I was doing was 1010
constructing a model of the theories using Dana Scott’s method, the denotational 1011
semantics, to cover a great number of theories of how programs worked. It was 1012
again one of those chance discoveries lying on a sofa that led me to believe that one 1013

 24

could actually present an adequate treatment, a usable treatment of the meaning of a 1014
programming language in a few algebraic axioms, which are almost identical with 1015
those that apply not just to programs but to numbers as well. Simple laws of 1016
associativity, commutativity, and distribution were exactly what you need in order to 1017
reason about programs and ensure their correctness. And I discovered a very simple 1018
proof in which I defined my own triple – or, sorry, the Hoare triple, it’s not really my 1019
own – in terms of the algebraic operation of sequential composition, and derived the 1020
proof rules from the algebraic axioms by a perfectly standard style of logical 1021
justification. 1022

 1023
So that was a surprise and I’ve been talking about it ever since. [chuckles] 1024

 1025
CJ: But each of those earlier steps that you’re now somewhat critical of spun off 1026

enormous amounts of other work. I can’t help wondering if you’d started with 1027
Kleene algebras if any us would have understood it. 1028

 1029
TH: [laughs] Quite. And the Kleene algebra, actually the advance was triggered by a 1030

discovery that I could do this for a new form of logic, logic of programs, a new 1031
definition of the triple that appeared recently as a result of the work of Peter O’Hearn 1032
called separation logic. I was looking at the proof rules which express the semantics 1033
of separation logic in terms of Hoare triples, and I discovered the law which enables 1034
me to treat concurrency in the same way as sequential composition. And that I think 1035
was really not only unification of theories but unification of two ideas which are now 1036
central to computing, concurrency and sequentiality, into a simple algebraic 1037
framework. And since then I’ve discovered that Robin Milner’s operational 1038
semantics could be similarly defined in terms of the algebra of the semicolon 1039
operator, and all of his laws, his laws of operational semantics, could be derived from 1040
the algebra as well. So yes, very satisfactory. [chuckles] 1041

 1042
CJ: And still busy? 1043
 1044
TH: Ah, yes. Well, I’m trimming the hedges a bit and trying to go back to a denotational 1045

semantics, which is really based on the needs of people who are debugging their 1046
programs. A person who’s debugging a program needs to see a comprehensible trace 1047
of the behaviour of that program together with an indication of where the fault has 1048
been detected, and with the ability to trace back in the program to all the places 1049
which might have to be changed in order to get rid of that fault. So one has a sort of 1050
graphical picture of arrows and chains of arrows leading back from a symptom to the 1051
causes to help you discover and diagnose and correct the error. 1052

 1053
So just as the Hoare triples were designed to help people to prove programs and the 1054
Milner similar rules, the operational rules are designed to help people who are 1055
compiling and implementing the programs. My new denotational semantics based on 1056
graphs is an attempt to provide the theory which is directly applicable to the testing 1057
and correction of programs. So I’m trying to bring that particular branch of 1058
programming methodology under theoretical control as well. 1059

 25

 1060
CJ: I’d like to change gear. Some of our audience I’m sure would like to know more 1061

about Tony Hoare the person. You weren’t actually born in the UK. 1062
 1063
TH: I was born in Ceylon, now called Sri Lanka, in Colombo. My father was a British 1064

civil servant, among the rulers of the country. And my mother was the daughter of a 1065
tea planter, which doesn’t mean somebody who plants tea but somebody who looks 1066
after a tea estate and looks after people who plant tea and collect it and dry it and 1067
manufacture it. 1068

 1069
CJ: Do you remember things about Ceylon as it then was? 1070
 1071
TH: I remember a few things. I went back there when I was 70. I took my family back 1072

on a holiday trip. And there are one or two things that I remember. Not as many I 1073
might have. It was mostly fairly… 1074

 1075
CJ: I actually meant do you remember things about living there when you were a child 1076

or…? 1077
 1078
TH: Oh yes. I remember going to school there, and the incidents going into the jungle to 1079

see elephants and tigers… sorry, leopards, and bears and buffalo. All of them pretty 1080
dangerous. The headmaster of the school took us on a school party to Yala where we 1081
stayed in the rest house and went around in this old bus to waterholes to see animals 1082
we could see. Fascinating. 1083

 1084
CJ: And you then had to move away, still not back to the UK immediately. 1085
 1086
TH: After… This is… We… My mother and my two brothers moved to Rhodesia 1087

during the war because of the threat of imminent invasion of Ceylon, and we spent a 1088
couple of years in Rhodesia and South Africa before going back. The school that I’m 1089
talking about was in the rather brief interval between returning to Ceylon and 1090
returning to Britain, ‘returning’ of course in two different senses. All the English in 1091
Ceylon regarded ‘returning’ as being returning to the United Kingdom. 1092

 1093
CJ: And your first school back in the UK was…? 1094
 1095
TH: Was the Dragon School in Oxford, a rather superior prep school where I spent just 1096

under two years. Got a scholarship to a public school in Canterbury, King’s School. 1097
 1098
CJ: Which leads on to your first university degree, which wasn’t an obvious preparation 1099

for computing. Could you explain what the degree of ‘Greats’ is? 1100
 1101
TH: Yes. It has quite an ancient tradition in Oxford. It consists of four subjects. Latin 1102

and Greek language and literature – well, that’s four already – Latin and Greek 1103
history, and ancient and modern philosophy. So it’s a four-year course with an exam 1104
in the middle, in which I did moderately well, but not sufficiently well to gain a 1105

 26

research grant to do doctoral research in philosophy at Oxford, which is what I would 1106
otherwise have done. Fortunately… 1107

 1108
CJ: That might have saved computing. [laughs] 1109
 1110
TH: I think it saved me from possibly rather a career for which I was not ideally fitted. 1111
 1112
CJ: What made you choose Greats? 1113
 1114
TH: Well, at the public schools in those days, all the brightest students studied Latin and 1115

Greek, and history was for those who can’t, and scientists, well, nobody knows what 1116
they take up for a subject. [chuckles] So I was always interested in mathematics. I 1117
got quite good marks in mathematics for as long as I was studying it, and I went on to 1118
study mathematics just for the fun of it from popular textbooks. And I acquired an 1119
interest in philosophy through the philosophy of mathematics, through reading books 1120
by Bertrand Russell for example and C. E. M. Joad, who was quite a popular 1121
philosopher in those days. And certainly it was the study of philosophy and 1122
particularly the philosophy of mathematics and the foundations of mathematics that 1123
led me into computing, take an interest in computing. 1124

 1125
CJ: You were at Merton College I think. 1126
 1127
TH: Merton College. 1128
 1129
CJ: Presumably that’s a very traditional college. 1130
 1131
TH: Very traditional. It claims to be the oldest. I’m there because my father was there. 1132

[laughs] 1133
 1134
CJ: But presumably offered you lots of scope to pursue your interest in philosophy and 1135

logic and so on. It wasn’t a tightly constrained course? 1136
 1137
TH: Well, the course was a fairly massive course, as all university courses seem to be 1138

after secondary school course. But we all had personal tutors, and the personal tutor 1139
would advise us, set us an essay subject every week in philosophy or ancient history, 1140
and so we went out to look at the literature, which he also recommended. No, I 1141
don’t… I mean I studied logic in my spare time, but we did have spare time for 1142
goodness’ sake. I studied it from Quine’s book on mathematical logic. 1143

 1144
CJ: And around this time, you met your first computer. The Mercury I think. Was that 1145

while you were an undergraduate, or was that in the master’s course that followed? 1146
 1147
TH: That was in the master’s course. I attended a course run by Leslie Fox, who was my 1148

later head of department when I came back to Oxford as a professor. 1149
 1150
CJ: And that was a course in statistics, not in programming as such? 1151

 27

 1152
TH: After my national service where I learnt Russian, I thought I better do something a 1153

little bit more practical. So I registered for a course at the Unit of Biometry just to 1154
get a diploma in statistics, a one-year course, and managed to persuade them that I 1155
knew enough mathematics to stand the pace. That enabled me… Well, I very much 1156
enjoyed that. I mean statistics is still something that I find interesting, and it’s 1157
getting more interesting for computer scientists too. 1158

 1159
CJ: Then there’s the machine translation connection. Could you knit that into the story 1160

for me? 1161
 1162
TH: Machine translation was a bit of a flash in the pan. When I was in Moscow, I got a 1163

letter from the National Physical Laboratory at Teddington offering me a post as a 1164
senior scientist to work in a team of programmers who were attempting to program 1165
an automatic translation from Russian to English on the Pilot… – no, not the Pilot 1166
ACE – the ACE computer at the National, which was, if you remember, a very 1167
primitive computer. So I took up an interest in the subject and I studied it in Russia, 1168
more or less neglecting my statistical studies, which I should have perhaps paid 1169
attention to, but were a bit beyond me. And that was how I got interested in sorting. 1170

 1171
CJ: Yes, I was going to make sure we got that link. So large dictionaries of words needed 1172

sorting, yes? 1173
 1174
TH: Yes, because the dictionaries were held on magnetic tape, and if the words were 1175

sorted before you started the magnetic tape whirring, then you could pick up all the 1176
words in a sentence on a single pass of the tape, which might very well take 20 1177
minutes. And the… So how did I get… Sorry, what was the question again? 1178

 1179
CJ: Well, just the link between machine translation and your eventual Quicksort 1180

algorithm, the design…. 1181
 1182
TH: Oh right. You were angling for that story then. 1183
 1184
CJ: So we’ve already mention Jill, Jill Pym before she married you. You were married in 1185

1982. 1962. 1186
 1187
TH: Thank you. [laughs] 1188
 1189
CJ: [laughs] 1190
 1191
TH: Yes, January ’62. 1192
 1193
CJ: Children? Grandchildren? 1194
 1195
TH: Yes, we have three children. Tom first. He’s now a security expert working in the 1196

research facility of Huawei in Banbury, Oxford. My daughter Joanna is married… 1197

 28

Sorry, her partner is a city architect in Vienna, and she lives in Vienna and learned 1198
German, and is now working as an organiser for the Buddhist community in Europe. 1199
And my youngest son was Matthew, was a bright schoolboy, but he unfortunately 1200
succumbed to leukaemia some time ago. In, well, 1982. He was very clever, 1201
amusing, bright, an extraordinarily kind and considerate person. Real, real fun to be 1202
with. And he left us with many happy memories. 1203

 1204
CJ: You’ve lived in houses, I gathered earlier, more than one in Barnet. 1205
 1206
TH: Yes. That’s North London. 1207
 1208
CJ: North London, yes. Of course Belfast, which we have talked about. Then you lived 1209

in Oxford. 1210
 1211
TH: Yes. 1212
 1213
CJ: And now here. Actually ignoring for the moment the spells in the States, not too 1214

many moves in your life. 1215
 1216
TH: No, no. Eight years for industry, nine years in Belfast, 22 years in Oxford. Wow. 1217

[laughs] I keep remembering that this is twice as long as Mrs Thatcher was Prime 1218
Minister, and that was too long. 1219

 1220
CJ: [laughs] 1221
 1222
TH: And now 16 years working for Microsoft in the research department. 1223
 1224
CJ: Yes. And there were spells in America at least. 1225
 1226
TH: Yes. The first one was six months where I was hosted by Don Knuth and wrote a 1227

number of papers, and met the Palo Alto Research Center of Xerox, which was the 1228
leading, really leading computer science laboratory in America at the time. And then 1229
a year in Austin, Texas with Edsger Dijkstra, which was wonderful. 1230

 1231
CJ: The famous Year of Programming. 1232
 1233
TH: The Year of Programming, yes. We organised a series of seminars which we called 1234

the Year of Programming. And I’m hoping to go back there next year to renew 1235
acquaintance and celebrate the retirement of a close friend and colleague. 1236

 1237
CJ: Well, to move towards wrapping up, as well as the Turing Award in 1980, the 1238

enormously prestigious Kyoto Prize in the year 2000, honorary doctorates. Can you 1239
remember the first and the most recent perhaps? 1240

 1241
TH: Yes, yes. The first was at the University of Southern California, and it was 1242

organised by Per Brinch Hansen, who was good friend of mine. He was a great man. 1243

 29

And the most recent were in Europe – Warsaw, Madrid, and Saint Petersburg. 1244
 1245
CJ: And at least 10 in between those, so… 1246
 1247
TH: Well, nearly perhaps. I don’t know. [laughs] 1248
 1249
CJ: …a lot of honorary doctorates. Fellow of the Royal Society, Fellow of the Royal 1250

Academy of Engineering, a knighthood in the year 2000. That was a good year. 1251
 1252
TH: Yes, it was a good year. [laughs] That was my first year at Cambridge. So I met the 1253

President of China, the Mikado of Japan, and the Queen, all in the same year. 1254
 1255
CJ: So it was actually the Queen who conferred the knighthood on you? 1256
 1257
TH: Indeed it was, yes. 1258
 1259
CJ: Many collaborations along the way, and in many cases those collaborations have 1260

established that person’s main scientific thrust. Do you work best in collaboration do 1261
you feel? 1262

 1263
TH: I haven’t made… I work a lot by myself now. I think I do enjoy being… Well, I 1264

need somebody else to keep me on the rails. [chuckles] Niklaus Wirth filled that 1265
role for some time, He Jifeng for a very long time. Admittedly they do a quite a lot 1266
of the hard lifting and I’m very grateful to them. 1267

 1268
CJ: Well, Tony, thank you very much. It’s been a very interesting discussion and I’m 1269

sure our audience will enjoy hearing something about the way you do research and 1270
about you as a person. 1271

 1272
TH: I hope so, but it’s been very much a pleasure to meet you again and answer your 1273

questions again. Thank you. 1274
 1275
[end of recording] 1276

