
A.M. Turing Award

Interview with James (“Jim”) Nicholas Gray

1998 ACM Turing Award Recipient

United States

This interview was initially produced by Microsoft Research for their
Channel 9 series of interviews with prominent researchers. The ACM

is grateful to Microsoft Research for putting this program into the
public domain.

Barbara: = Barbara Fox, Interviewer,

Jim: = Jim Gray, ACM Turing Award Recipient,

Mike: = Mike Harrison,

David: = David Vaskevitch,

Tom: = Tom Barclay,

Catharine: = Catharine van Ingen

?? = inaudible (with timestamp) or [] for phonetic

Barbara: Hello. I’m Barbara Fox and I’d like to welcome you to Behind the Code.

In this series, we feature Microsoft employees who have achieved great
things. As your host, it’s my goal to uncover passion, insight, decision
making, wins, losses, and key learning points as they relate to a
successful career. This interview will not focus on technology but rather
on the person behind the code.

Jim Gray is a Technical Fellow in the Scalable Servers Research Group
and Manager of Microsoft’s Bay Area Research Center, or BARC. Jim has
been called a giant in the fields of database and transaction processing
computer systems. He is a member of the National Academy of
Engineering, National Academy of Sciences, and the European Academy
of Sciences, and is a Fellow of the Association for Computer Machinery.
He is also the editor of the Morgan Kaufmann Series in Data Management
Systems. In 1998, Jim was awarded the ACM’s prestigious A.M. Turing
Award.

 2

Before joining Microsoft, Jim worked at Digital Equipment Corporation,
Tandem Computers, IBM, and AT&T. He is the editor of The Performance
Handbook for Database and Transaction Processing Systems and co-
author of Transaction Processing Concepts and Techniques. Jim holds
doctorates in computer science from the University of California, Berkeley,
the University of Stuttgart, and the University of Paris.

Please join me in welcoming Jim Gray. [applause] Jim. Thanks for
coming.

Jim: Hello, Barb.

Barbara: Thanks, Jim. Thanks for coming.

Jim: Great work. [laughs]

Barbara: [laughs] Let’s get into some serious questions here. Right now, you’re

working on a really fascinating project. It’s basically the SkyServer.
That’s part of a larger initiative called eScience. Can you tell us about
that?

Jim: Sure. One of the reasons I came to Microsoft is that our so-called

strategic intent is “Information at Your Fingertips.” What that means for
knowledge workers in the future is vast amounts of information that they in
fact are struggling to understand. I mean it’s not that the problem is that
the information isn’t at your fingertips. It’s just that there’s petabytes of it
out there. How the heck do you get to it?

One context in which you can explore that is the area of sciences. The
scientific community is gathering information at a prodigious rate. Unlike
the situation at Walmart or the situation in many commercial enterprises,
the science community is pretty public about what they’re doing. If we
work with say Target or Walmart, we can’t talk to the other about what
we’re doing with them. If we work with the science community, we can talk
to people in other… other physicists about what these physicists are doing,
or in fact to biologists about what the physicists are doing.

I’ve taken the task of getting all of the science data online, getting it
accessible so that you can easily understand what the information means,
getting it cross-indexed to the literature, getting it cross-indexed to the
other sciences as being a really good challenge for Microsoft as part of
“Information at Your Fingertips.”

Barbara: What’s the hardest part of SkyServer?

 3

Jim: Well, SkyServer is the astronomers, first. Somebody explained to me
once that computing would be really easy if it weren’t for tapes and users.
The biggest problem with the SkyServer is the astronomers – that it’s very,
very hard to get people to agree. The fundamental thing we’re trying to do
with the SkyServer is build a conceptual model for astronomy. That
means that you have to agree on what a star is and you have to agree on
what a galaxy is, and you have to agree where the galaxy starts and
stops, and you have to agree on how you’re going to measure things. You
have to agree like on the metric system. And you have to appreciate that,
well, you think the astronomers all would agree on the metric system.
Well, they still actually use this thing they got from the Phoenicians called
the sexagesimal system – they measure things in hours, minutes, and
seconds. [laughs] So simple things like that you’d think would be… “Boy,
if we can’t solve that, we’re in big trouble.” Well, we’re in big trouble.

Barbara: A question for you. In your eScience work, a lot of people want to work

with you because you know everybody in the industry. Also it seems like,
moreover, you seem to pick the right problem. Everyone that we talked to
about you says, “This guy has the knack for picking the right problem to
work on.” We had an opportunity to talk to Mike Harrison. Mike of course
was your professor and mentor at Cal. We asked him a question about
that. Here’s what Mike had to say.

Mike: There’s so many kinds of talent in the computing field, but Jim’s got the

ability to understand it all, to be good at everything, and I think to pick
good problems. I think that’s perhaps the most important thing, to pick a
good project, to pick a good problem. We can invent things which are
very hard and beyond us or almost all people in science. And Jim’s had a
way of picking problems in many areas and advancing those areas. That I
think is really the significant thing. You can find many people who are
great visionaries but never do anything, or great coders who… There’s so
much talent out there, but Jim’s got breadth and depth, and that’s a
wonderful thing. He’s also a good human being.

Jim: Wow. [laughs]

Barbara: [laughs] Quite a compliment. So Jim, how do you do it? I mean, how

do you pick the right problem to work on consistently over your career?

Jim: Well, so Mike Harrison was my thesis advisor. We actually worked on

complexity theory and “How complicated is it to do things?” The
interesting thing about theory is that there is in fact no “simplicity theory.”
There’s only complexity theory. The goal is to find something that is
simple enough that you can actually make progress on. Many people
show up at my doorstop, as you say, and say, “Help! We’ve got a mess
on our hands. Can you help us clean up the mess?” The typical answer

 4

is “No, I don’t see a way of cleaning up the mess.” Occasionally you see
something which essentially is speculative, but you say, “If we could solve
this and this and this problem,” and you can enumerate the problems,
“then we could make an advance.” So I think the key thing is to go into a
project with an idea that “If you could do this and this and this, then things
might work out.”

And you have to have some theory about how you might approach those
things. We all are optimists. Most of us wouldn’t undertake the projects
we’ve undertaken if we knew how hard it was going to be. Just, I mean,
“How hard could it be, right? What’s the worst thing that could happen?”
Well, you can’t imagine [laughs] the worst things that can happen, how
hard it’s going to be. On all these projects that I’ve been through, it’s much
harder than I thought when I started, but it looked easy when we started.
So I typically work on problems that I think are solvable. I mean that’s
about the only way I can describe it.

Beginnings

Barbara: Let’s go back to you as a child here, try to figure out how you got to

where you are today. You were born in San Francisco in 1944. What is
kind of interesting is your first language was Italian and you spent the first
three years of your life in the American embassy. That’s an unusual
childhood. You want to tell us how that started?

Jim: Yeah. My dad was in the Army, World War II, and he distinguished

himself. When he came out, they gave him a plum job working in the
embassy in Rome as an intelligence officer. We had a villa and his job
was to entertain people and figure out who were the good guys and who
the bad guys were, and gossip and find out what was going on. Italy at
the time was considering swinging to the very, very far left and becoming
seriously communist, and he was trying to forestall that as were many
other people in the US military and the US government.

Barbara: Jim, what did your mother do?

Jim: My mother was a schoolteacher, taught third grade for many, many, many

years, and is now retired.

Barbara: Do you have a sister?

Jim: Yeah. My sister Gail was a CPA. She now lives in Mexico.

Barbara: Well, let’s skip to college. You went to the University of California at

Berkeley. You went to a school at a time that everybody will remember as
“the ’60s.” Basically that was the Vietnam War era. It also I think at Cal

 5

was the center of the free speech movement. What was it like to go to
school there at that really turbulent time?

Jim: Well, Berkeley is a great university to this day. It was a great university at

the time. Multicultural, multinational, lots and lots of different ideas.
There’s a quadrant of the campus which is full of nerds. It’s all physics
and chemistry and engineering and mathematics and so on. But there are
three other quadrants that are quite different. I found it to be just a
wonderful place to get a good education. The American education system
is kind of strange. We screw around till we get to college and then we
start learning. It’s more or less a socialization process till then as far as I
can tell. So I had an awful lot of catching up to do and had to learn a lot of
science and a lot of mathematics and to learn to read and write in fact.

Barbara: You started as a philosophy and math major. Then I believe that you

really looked at Russell and Whitehead’s Principia Mathematica, saw how
computers were used in that context, and that might have been the very
beginning of your real interest in computers. Was it?

Jim: Yeah, yeah. I mean fundamentally I was interested in how we understand

things and thought philosophy was the right department to be in to
understand epistemology. The problem is that the philosophers were
using the same stuff they got from Lewis Carroll. They were using modus
ponens and predicate logic as their approach to representing knowledge,
and it just didn’t scale. It wasn’t going to work. It was clear I think
probably to them that it wasn’t going to work, and certainly to me. I was
looking for something else and Principia Mathematica was recast by
Russell and Whitehead into mathematics, and then I think it was Newell
and Simon came along and proved most of the axioms… most of the, well,
theorems in Principia Mathematica using a computer. And it was clear
that they had managed to represent that information in a computer and in
fact were manipulating information in ways that was very, very promising.
So I basically caught the bug and said, “This looks like the way to
represent knowledge.”

Barbara: Well, your timing was great. You ended up working on the CAL

Timesharing System. That was a very early capabilities-based operating
system. But you had a lot of people around at that time, like Charles
Simonyi, I think Peter Deutsch were there, Butler Lampson. I mean these
people are pretty much right now legends. What was it like sort of growing
up with the greats?

Jim: Just the way it is here at Microsoft.

Barbara: [laughs]

 6

Jim: I mean they are just ordinary people, actually. [laughs] We were all
equally confused. They’re very bright. I mean I remember how quick
each of them was. They were a lot quicker then than they are now,
actually. But Ken Thompson was just an ordinary guy. He just hung
around in the Computer Center at night and he’d spend a lot of energy
trying to get the tape drive to march across the room by writing this
program that would spin the tapes back and forth, back and forth, and see
if the tape drive would… [audience laughs] I mean we were basically kids
having fun.

IBM

Barbara: You ended up graduating. As a matter of fact, you were the first

computer science graduate, PhD, from Cal. You went to IBM in Yorktown
Heights, New York. Your first project I found really fascinating. At that
time, there was a book published by a think tank called the Club of Rome.
The book was actually 1972, Limits to Growth, in which they extensively
used computer modeling. The idea was dire consequences for mankind.
IBM assigned you to do that as a computer science guy.

Jim: Well, sort of. I mean that’s not exactly how it happened. At Berkeley, we

were very socially conscious and we wanted to see if we could use
computers for things more than inventory control, and in particular, could
we use them for some kinds of social planning? There was a guy at MIT
by the name of Jay Forrester who had similar ideas. He’d been using
computers for inventory control and he said, “Maybe we could use this for
city planning,” and then he did some of that. Urban Dynamics was a book
that he wrote about that. Then he wrote I think it was called World
Dynamics. And something called the called the Club of Rome got formed
and there was this very dystopian view of the world, which is that “We’re
going to run out of resources in the year 2020, and this computer model
proves it.”

So I had re-implemented Forrester’s models at Berkeley, and I was a
postdoc at Berkeley for two years, an IBM postdoc, and I needed job. I
went and I got a job at IBM in the general sciences group. And indeed, the
people who were running IBM at the time, Watson was looking at the Club
of Rome and didn’t actually believe or like the conclusions that they had
come to and was eager for research at IBM to work in this area.

So I came along and I could work in this area. It wasn’t so much that they
assigned me to work on it. It’s I wanted to work on it and I had the
credentials. And made some progress on it, but frankly the basic problem
was the model was so screwy that Forrester had come up with and made
such bogus predictions that there really wasn’t much to say besides “This
model is bogus.” Doing a correct model is not something for dilettantes. I

 7

mean it’s fundamentally macroeconomics. The economists have been
working on this for a good long time. They’ve made a lot of progress in the
last… It’s been 40 years. They’ve made a lot of progress in the last 40
years. But it is a very, very slow process, requires a lot of data gathering
and a lot of very careful modeling, which frankly neither Forrester nor I was
up to.

Barbara: You ended up leaving IBM. You went for a short stint with UNESCO in

Romania, right?

Jim: Mm-hmm.

Barbara: Then you came back to IBM basically in the Silicon Valley. The most

stunning part about that part of your career is that that was really the
incubator time for relational database. I think Codd was there. What’s
interesting I think to a lot of people is that it was highly controversial within
IBM.

Jim: Well, you have to appreciate that in the beginning, there was COBOL.

Maybe they would say, “In the beginning, there was FORTRAN,” but okay,
for the EDP, electronic data processing people, in the beginning, there
was COBOL. And COBOL had a Data Base Task Group and they had
defined something called DBTG – “Data Base Task Group,” DBTG. It was
a database model for how to access data. It competed with IBM’s
product, which was IMS. It was a network data model and IMS was a
hierarchical data model, and there were these wars between network,
hierarchical, network, hierarchical.

And off in left field were these relational guys who said, “You guys are
completely wrong. It’s crazy to have such a procedural way of poking
around through data. You don’t get very much data independence, you
don’t get very much leverage, it’s hard to write programs. You should be
programming in set theory.”

Barbara: [laughs]

Jim: Now you laugh. Right. That’s what everybody else did. They laughed.

But that’s fundamentally what Ted was saying, Ted Codd was saying. He
said, “It is much, much simpler to express the problems you’re trying to
solve in set theory than it is in DL/I or DBTG. Both express the
information and express the manipulation.” And everybody said, “Well,
that may be true, but it’ll be too inefficient. Computers are expensive, and
you can’t waste computers. And these problems are huge. I mean we’re
talking about thousands or tens of thousands of records, and you can’t just
use…”

 8

Barbara: [laughs]

Jim: I mean literally. You got to appreciate this was the time of whole disks

were 10 megabytes.

So it was a perfect research project. The challenge is “Could you make it
efficient? Could you make it competitive? What if the trade-offs were
different? What if people were expensive and computers were cheap?
Then what would…?” Well, now, 34 years later, it’s obvious. Codd was
right. But he wasn’t right at the time, he’s just right now.

Barbara: One of the recurring themes that keeps coming up in your career is this

was an opportunity, the first of many you’ve taken, to really get down and
dirty in understanding what’s going on, not only just on the research side
but on the product side. But at that point, you did a lot of foundational
work, you wrote a lot of papers that have really made a huge impact. So a
couple of those themes, I mean you brought concurrency and transactions
to people who were thinking about databases. But two of the ones that
were really huge, well, one is your book, the book on Transaction
Processing, which I, if you guys can see this…

Jim: [laughs]

Barbara: …pointed to Jim is still $70 used, okay, which said something. [laughs]

One thing from the book and from that time was predicate locks, which
was a paper, and a concept called ACID. Can you start out and explain
some of those and why they were revolutionary then?

Jim: Sure. There are a lot of points in that question.

Barbara: [laughs] Yeah.

Jim: First, people were building database systems. They worked and they had

concurrency. Not just that, there were a bunch of people in academe
who’d been working on concurrency. The people in academe who’d been
working on concurrency were primarily concerned about improving the
throughput of the computer by doing things in parallel. The canonical
thing that they worked on was matrix multiply. They wanted to do matrix
multiply in parallel, and they figured out that if you did matrix multiply in the
following order, you got a speed-up. But the goal was always to get the
right answer, and when you multiply two matrices together, there is only
one answer – it’s the product, the determinant of the matrix.

Okay. We come along and we are doing database things where
transactions are arriving, people were making requests to the database,
and there is no right answer. There are wrong answers, but there’s no

 9

single right answer. So we were trying to figure out, “Well, how do you
actually say that?” The answer is, well, there are certain invariants, there
are certain properties you want to preserve. Like if it’s a theatre and you’re
selling seats, you don’t want to sell the same seat twice to different people.
You don’t even want to sell it twice to the same person, but okay.

So we tried to come up with a theory that described or a set of rules that
described the kind of concurrency that could be allowed. In retrospect, it
seems really straightforward. At the time, it wasn’t exactly straightforward.
And in fact, there were lots of different approaches that people took.
Some of them have fallen by the wayside, some of them have prospered.

We concluded that if you did the following things, then it’s as though you
ran one transaction at a time, and running one transaction at a time is not
going to have any concurrency anomalies. So if you run things in parallel
and you get a behavior that’s identical to some serial schedule, some
“running one thing after another after another,” then you don’t have any
concurrency anomalies. Okay? Everybody can understand that. It’s
pretty straightforward.

Then the question is “How do you get the maximum concurrency and still
preserve this appearance of sequential execution?” We developed a
bunch of strategies for that that all are generally called “locking.” Just what
do you keep hidden until or what do you block people from doing until the
previous transaction is completed?

That’s the concurrency stuff. We implemented that, and there was a lot of
interplay between our implementation and other people who’d done
implementations, and us learning from them and them learning from us.
Then somebody came along and said, “Well, what are the properties that
you really want of transactions?” Andreas Reuter in fact, the co-author on
this book, is the guy who coined the term “ACID.” It’s a pun on the fact
that his wife hates sweet things and loves vinegar. It’s basically that the
transactions should be Atomic, they should be all or nothing; they should
be Consistent, they should transform the database from a correct state to
another correct state; that once the transaction completes, it should be
Durable, and that’s where the “D” comes from, that its effects should
persist forever; and that the transaction should run as though there are no
other transactions executing, so it should run in Isolation, and that’s what
“I” stands for in “ACID.” So two ways of thinking of it. It’s a pun on the fact
that Christiana doesn’t like sugar. Another way of thinking of it is that it is
this Atomicity, Durability, Isolation, and Consistency property.

Barbara: It’s become quite famous.

 10

Jim: Yeah, it has. I mean people talk about the “ACID properties.” It’s also a
pun on the acid test for the goodness and badness of things.

Barbara: Were these a series of aha moments? Is that how you work? Or did it

come to you all at once, or…?

Jim: Especially for theoretical things, there are moments where you don’t

understand and then you understand. You finally get the proof to go
through or you finally get the crisp statement of the problem. So there
were some aha moments there. And when you write codes, there are aha
moments when you find a bug. [laughs] You’ve been chasing a bug for…
I mean concurrency bugs could elude you for weeks and months, actually.
When you finally find it, usually it’s something fairly subtle.

Tandem

Barbara: Let’s go back in your career again. Let’s jump to 1980. You went to

Tandem. Tandem was a distributed-system, fault-tolerant operating
system environment, and called NonStop. That was quite a change
coming from IBM.

Jim: Yeah, it was.

Barbara: What was the challenge going there?

Jim: Well, it’s an interesting thing. People at Microsoft think they work for a big

company. When I left IBM, it was a third of a million people. It was –
what? – six times bigger than Microsoft in round numbers. It was also a
much older company, so it was very stodgy. So I show up at this
company that’s got a thousand employees. I described it as “a computer
company on a chip.” I mean you could go downstairs and see them
making the computers, you could go over there and see them writing the
software, you could go over there and see them selling the computers to
the customers. The president’s office is over there, the manufacturing
floor is there, the… You know? You were able to know people from all
over the company. That was very, very educational. Learned a lot.

Also, the ship time was a lot shorter. I shipped the first code I wrote out of
IBM about two years after I left IBM. I’d been there for… So it was 12
years and the first line of code ships. And about three months after I was
at Tandem, I shipped some code. Now…

Barbara: What was it?

Jim: A text processing system.

 11

Barbara: [laughs]

Jim: It did right justification and a few other things. You know, we have terrible

problems. Slavery is illegal in America. But if you’re working for a
company and you’re working on relational databases and you know a lot
about relational databases and transaction processing and you go to work
for another company, how exactly do you work on databases and
transaction processing without violating all of the intellectual property that
you know? It’s just in your blood. It would be hard to write a program that
doesn’t have that stuff built in. So I personally have this sort of statute of
limitations, which is in round numbers about two or three years, and I try
not to work on… So for about two or three years at Tandem, I didn’t work
on databases or anything like that. I just worked on other things. I worked
on a system dictionary, I worked on this text processing thing. And the
reason for doing the text processing was just to see, “Well, how do we
ship code here? What’s the process? What’s the programming
language? [laughs] How does QA work? How does…” And it taught me
all those things.

Barbara: Actually, this not working on… like you say, carrying forward, respecting

intellectual property, that has given you a lot of diversity in your career.

Jim: Yeah.

Barbara: It’s a huge asset to you, don’t you think, over time?

Jim: Well, yeah. You can teach liability… I mean the reason they hired you is

because you know all this stuff. [laughs] And yet you’re not supposed to
know it. So yeah, it cuts both ways.

I mean after the two or three years, I went back and started working on a
very, very nice SQL system, which was fault-tolerant, distributed, and so
on. I’m still very proud of what we did. It was a very nice system. We built
a great team of people and did very cool stuff. But yes, it definitely
encourages diversity. That is to say, I mean if you’ve got to take two years
off and work on something else, there’s plenty of things to work on.

DEC

Barbara: Let’s jump to 1990. In 1990, you went to Digital Equipment, DEC. DEC

at that time was starting to lose its pedestal as the premier provider of
midrange systems and software. You went in as a lab manager, but you
were also a manager, very much so in that role in your life. What was it
like to go into that environment?

 12

Jim: First, another IQ test I failed. DEC was in a power dive at that point. But I
didn’t know it and in fact most of the people at DEC didn’t know it. There
certainly were some people who understood it. I thought the Alpha was a
great instruction set, a great chip. DEC was the second-largest computer
company on the planet at that point. There were people like Wang who
were having problems, but DEC actually seemed to be doing okay. Yeah,
they were losing a little bit of market share to this company called Sun and
there was this workstation stuff they weren’t doing so well on, and these
“PCs” were coming along and that was kind of problematic. But they had
this minicomputer market that was really great. They had ALL-IN-1 and
they had this “DEC gets it.” They were selling a lot of IT software.
Actually on the outside it looked pretty healthy to me.

And DEC was an interesting company. They had what’s called a dual
ladder. They had a technical ladder and they had a management ladder,
and they more or less treated the technical people with respect, which is
not true of most companies, most technical companies. Usually the
managers are in charge and the techies are considered staff. For better or
for worse, DEC actually let the techies steer to some extent. And frankly,
the techies drove this company off the cliff, but that’s… [audience laughs]
I was sitting there at DEC wishing, “Gee, wouldn’t it be great if this
company had some marketing?” [laughs] “Somebody who understood
that when you build it, you have to have a customer to pay for it.”

Barbara: Jim, wasn’t it at DEC that you first started performing your now

trademark “stunts,” benchmarks that really show real products and how
they work? What drives you to do that?

Jim: Well, I think it really started at Tandem with trying to show off SQL

systems running lots of transactions per second. But at DEC, we did
sorting benchmarks and we continued the transaction processing kinds of
benchmarks. More recently, the TerraServer is an example of a stunt.
The work we’ve been doing with the people at CERN, moving data at a
very high speed from CERN to Pasadena over the network is an example
of a stunt.

All of these thing go through the product from front to back and find things
that are broken, what’s called the “guru gap” – that the gurus can get great
performance, but you have to set this knob and this knob and this knob
and this knob. We just try and figure out, “Well, exactly what do you have
to do to get the great performance?” then we go back to the product guys
and say, “You know, we should make that the default behavior. You
shouldn’t have to do all of that to get good performance.” I’ve seen that
again and again and again have high payoffs. Benchmarking work for
transaction processing really dramatically improved the performance of

 13

everybody’s system, our systems and the competitors’ systems. And a
similar story with sorting.

Barbara: Also I think during that same period, your lab did the foundational work

on what’s now called the whole field of data mining. Can you show us in
our very expensive props I thought you might have brought along with you
to show us how that actually works?

Jim: [laughs] Yeah. Well, I’m not sure we did the foundational work for data

mining, but the challenge that the world faces these days is “How are we
going to use lots of processors and lots of disks in parallel?” The answer I
believe is dataflow programming.

The props I use to explain that is imagine that you have lots and lots of
data sources. So here’s a data source. You can take the data and you
can process it in various ways. One style of processing is what’s called
pipeline parallelism where you take data from here and you run it through
some program and out comes the resulting data. So you can get parallel
processing by pipelining data from one to another. The key thing here is
that the data that’s coming out here is uniform. It’s like a relational
database. The records are coming out in a very uniform way. And you
can take and build fairly elaborate dataflows this way and get natural
parallelism where this program is executing in parallel with this program, is
executing in parallel with this program, is consuming data from a disk.
Here, we have a program that’s taking data from two data sources and
producing some results. We can take those results and feed them into a
larger web.

Here is an example of a parallel program that you could build fairly simply.
The key thing about this is that there’s actually no parallelism inside your
programs. This program is sequential, this program is sequential, this
program is sequential. You can debug these as though you’d be
debugging a sequential program, but this whole thing is running in parallel.
This is the kind of pipeline parallelism you see in a production line where
everybody along the line is doing something slightly different, but in fact
things are flowing along the line and being processed in a highly parallel
way.

This is pipeline parallelism. There’s another kind of parallelism which is
partitioned parallelism, where you take this whole line and you replicate it.
You can take this whole process, and if you have twice as much data, you
can process twice as much by giving this stream half the data and that
stream half the data. That’s partitioned parallelism.

This very simple model of programming I think is going to revolutionize the
way we do parallel programming. It’s the core technology inside of

 14

relational database systems and it’s now beginning to appear as a core
technology in many other places. If you look at SQL Server Integration
Services is the name of it, it gives you a programming model for dataflow
like this. If you look at what people are doing at websites, like Google talks
about Bigtable and Sawzall as two processing systems. They’re a
dataflow programming model very similar to this where you’re doing
parallelism and yet your programs are completely sequential. And this is a
really very good way of mining very, very large quantities of data.

Barbara: Although you’ve spent a lot of your career in the commercial side of

research, I think people in academia credit you with contributing a great
deal to the understanding of and creating a field actually of how algorithms
work in transactions. You legitimized by writing a number of papers your
own research and explained a lot to that community. I’ve heard a lot of
people say that was the basis of the Turing Award. Do you think that’s
true?

Jim: Yeah, I do. Fundamentally, Mike Harrison, who we heard from earlier,

taught me to write things down. An awful lot of the work I did was joint
with other people – Franco Putzolu, Irv Traiger, Mike Blasgen. I work with
a lot of very, very bright people, and on most of these papers, they were
co-authors who were in my opinion equal contributors to the articles. But I
wrote lots and lots of stuff, and they didn’t write very much. So the fact is I
got credit for a lot of work that was really the work of our group. I think
when they decided to recognize somebody for the Turing Award for the
contributions to transactions, I was the obvious choice because I’d done
most of the writing and I was the front man. But there are a lot of other
people who contributed to that work. Similar to the TerraServer – people
think I did the TerraServer, and the simple fact is Tom did the TerraServer.
I was the manager.

Microsoft Research

Barbara: Let’s get you to Microsoft. In 1995, you went to a conference – you

spent some time in academia in the middle – went to a conference and
ran into David Vaskevitch, who is now Chief Technical Officer.

Jim: High Performance Transaction Processing Workshop, right.

Barbara: That’s right. Since David starting recruiting you right away, we went

and we talked to him. Here’s what David had to say.

David: He has a great sense of humor and he’s a very engaging person. I think

that’s a big component of it. I think one of the biggest things – and this is
a rare quality, that people who have this quality all tend to be viewed as
great – he has an ability to go back to first principles. A lot of people…

 15

One of the things that I’m working on in general is converting Microsoft as
a whole to be more intentional. When you think about what it means to be
intentional, part of the definition of intentional is saying what you mean.
Another part of it is meaning what you say. But there’s a big part of it
which is about knowing the reasons for the things you do. A lot of people
don’t, most people don’t know the reasons for the things they do. You
know, “I’m doing it because I’m doing it” or “I’m doing it because that’s the
way people always have done it” or “I’m doing it because it’s part of the
plan” or “because somebody told me to do it.” Whereas Jim is able to take
things back to kind of bedrock and “Why is a database interesting? Why is
a transaction interesting? Why would you write code a particular way?
Why would a customer want this versus that?” Jim’s always able to
explain those things in terms of the things that are really real in our lives.

Jim: [laughs]

Barbara: Jim, when you came to Microsoft, David had just written a piece in

Datamation basically saying that Microsoft’s challenge was running SQL
on “big iron,” meaning mainframes, [and “steam irons.” 39:00] What was
the biggest challenge you saw Microsoft face when you joined?

Jim: Well, again, just as when I went to DEC, I was clueless about what it was

like on the inside. When I showed up at Microsoft, I’d heard about this
duopoly, the Wintel duopoly. I sort of assumed that Microsoft and Intel
had this plan and they were going to go forward. The first thing I learned
was that the Intel guys didn’t care about servers at all, that they weren’t
actually planning to build very big servers, and that the computers that we
were working on were pretty modest. It’s been quite a while for us to get
bus bandwidth and other properties that kind of match our brethren who
have… Well, I’m thinking in particular these days of the IBM PowerPC.
So one of the challenges we faced is we had really modest hardware.

The other challenge we faced is that it was a desktop company and David
was trying to get it to be server-centric. I remember talking to somebody
from NetWare and asking how on Earth they could have essentially all of
the fileserver market when Microsoft controlled the interface. He said,
“They don’t get servers. They don’t understand that instructions on the
server are precious, speed on the server is precious. Simplicity is the key
to speed and they’re a functionality company.” So one of the challenges
was to form, and I think David and Dave Cutler as well managed to form a
group of people who are server-centric as opposed to desktop-centric and
are very worried about the kinds of issues that come up in a server
environment.

 16

My goal, and I think the goal that David sketched in the Datamation article,
was to do scale-out. For one reason or another, until very recently we’ve
been doing scale-up, which is to say get our products to run on bigger and
bigger and bigger, more mainframe-like systems. We are I think now
starting to do the scale-out agenda seriously. But one of the challenges is
I’ve constantly been saying, “You know, there’s a lot more mileage in doing
scale-out than scale-up, because you can go a lot further. There’s always
a biggest machine you can buy. There isn’t really a biggest cluster you
can buy.”

Barbara: I’m going to ask you about machines here right away. You did an

invited ACM paper and you used an analogy that I think we want to
demonstrate here called “smoking hairy golf balls.” We have a smoking
hairy golf ball.

Jim: Yeah, absolutely. I’ve brought mine along.

Barbara: [laughs]

Jim: Here it is. The concept is that the speed of light is finite and a

nanosecond is a foot. So if you buy a gigahertz processor, it’s doing
something every nanosecond. That’s the event horizon. But that’s in a
vacuum, the processor is not a vacuum, and signals don’t go in a straight
line and the processor is running at 3 gigahertz. So you don’t have a foot.
You’ve got four inches. And the speed of light in a solid is less than that.
So this is the event horizon. If something happens on one side of this
thing, the clock is going to tick before to the signal gets to the other side.
That’s why processors of the future have to be small and in fact golf ball–
size.

Why are they smoking? Well, because they have to run on a lot of
electricity. The way you get things to go fast is you put a lot of power into
them. So heat dissipation is a big problem. Now it’s astonishing to me
that Intel has decided that this is a big problem only recently, because
people knew that we were headed towards this heat cliff a long time ago.

And why is it hairy? Because you’ve got to get signals in and out of it, so
this thing is going to be wrapped in pins.

Now another interesting thing about this is that we actually haven’t gone
3D with our processor architectures. Processor architectures are some
integer number of layers, like 10 or 20. But we could actually make 3D
things which would give us much better space density if we could deal with
the heat problem. Probably in the next decade, the processors will be sort
of on this scale and cooling is going to be the big problem for them.

 17

Barbara: Well, before we move on, I’d like to ask you a question about… your
role is really at the intersection of research and product. I believe you
called getting ideas from research into product “tin-cupping.” So you
wander around and you ask the product guys what they want or what they
can use. What is the most challenging part of that process?

Jim: Well, actually the challenge for a researcher is getting product guys to

embrace your ideas. Frankly, a product guy has schedules and they have
of course a product that they are doing. When you come through the door
with a new idea, you represent risk. The managers are trying to minimize
their risks. That’s one of their key things. And also minimize
dependencies. Dependencies is not something you want, and here’s
somebody coming through with potentially a dependency.

So, quote, “selling research ideas” is a full-time job for researchers. The
“tin-cupping” aspect of it is that oftentimes a research project needs
collaborators, needs help. Take the example of the TerraServer. We
needed to have people help us with hardware, we needed to have people
help us with support for the hosting. So we would go to various parts of
the company and say, “This would show off SQL” or “This would show off
clustering” or “This would show off HomeAdvisor” or “This would show
off…” Finally, MSN decided that Virtual Earth was one of their main
strategic objectives, and then there wasn’t tin-cupping anymore. They
said, “We want it,” and that was great. But for almost eight years of the
TerraServer’s life, we were supporting it year-by-year by going around with
a tin cup and saying, “Will you be part of this research project?”

Barbara: In your experience, how long does it take for an idea from research to

really show up? And this is in product long-term.

Jim: It varies enormously. When we did the data cube paper, I went and talked

to the SQL guys and about two months later somebody called up and
said, “Hey, why don’t you download this thing and see whether you like
it?” I downloaded it and there SQL had implemented data cubes and it
shipped about, oh, six or nine months later. So that’s as good as it gets.
[laughs] More typically, the TerraServer is 10 years.

Barbara: Interesting.

Jim: And there’s everything in between. We did system mirroring for

databases and that’s in SQL Server 2005. The snapshot isolation paper
that we wrote in 1995 ships in SQL 2005. So 10 years is pretty typical.

Barbara: Let’s move on to another project you’re working on now, and that is the

TerraServer. I know every time we talk to you about TerraServer, you
always do great attribution of Tom Barclay.

 18

Jim: I do.

Barbara: Tom is a researcher who works with you on this project and you’ve said

he’s done all the heavy lifting, really. So we brought Tom.

Jim: Oh, great.

Barbara: So Tom is here, and…

Jim: No kidding. Hey, Tom!

Barbara: [laughs]

Tom: Hey, buddy. How you doing?

Jim: Nice shirt. [laughs]

Tom: [laughs] Yeah, where’s yours?

Jim: They gave me a dress code.

Tom: “No TerraServer shirts”?

Jim: “No TerraServer shirts.”

Tom: Thank you.

Barbara: Hi, Tom. Thanks for coming.

Tom: You bet, Barbara.

Barbara: Can you do a quick little on a huge project like this, a brief explanation

of what the TerraServer…? I think everybody pretty much knows what it
is. But can you say something about its impact over the time you’ve been
working on it on Microsoft and on the industry?

Tom: Well, I guess the joke we always say about it, it’s the project that keeps on

giving and taking at the same time. When we first started, the problem
was scale-up. Jim mentioned the Intel and Windows community really
wasn’t focused on large scale. So that’s what got us all started on it, was
to show off first the problems we had, then when we succeeded with each
release of either SQL Server or Windows, keep going. And as luck would
have it, every time we get time to turn it off and shut it down, it would be
the next great jihad at Microsoft. Then it became four-node clusters and
what was going to be something that demonstrated it at scale? It turns out

 19

having something that was real and had real data behind it was a
convenient thing. And as time has gone on, we’ve now moved on to
scale-out as well. So it’s an interesting thing, as Jim pointed out earlier on
in his career, is that actually going off and doing the stunts and trying to
actually show how you could do scalability simply is an ever-recurring and
important theme in the company.

Barbara: So Tom, I understand it was quite an adventure getting some of the

data for the TerraServer. In particular, your venture in getting the data in
Russia. You want to tell us about that?

Tom: Well, it sure was, Barbara. There we were, two Californians and an ex-

Berkeley hippie stomping around Red Square. The first day we get there,
Jim’s on TV in the Russian space agency on live broadcast, then in the
afternoon, we’re met with an AK-47 as we were escorted into the
production facility. And true, if you’ve ever heard some of the stories
about how business is done in Russia, we were at Danilov Monastery and
we had dinner with our hosts. Here we are, there’s 27 people in the room,
very elegant table setting, and sure enough we’re invited to give a toast,
and the next person, and the next person.

Of course, Jim and I are down about number 13 or 14 into this whole thing,
and I come to find out that vodka is a truth serum for Jim. He had done
really great being a politician, and he started out his toast with “Well, when
we first arrived here, we didn’t trust each other,” and you could see all the
people with guns get excited. I kind of look at Jim, “Not now,” and picked
right up and moved right on into the great trust we had formed and now we
have this wonderful relationship. And another 14 toasts later, we
staggered out and into cab and left the country.

Jim: [laughs]

Barbara: Is it true?

Jim: Yes, absolutely. Tom never lies. [laughs]

Barbara: One thing I’m curious about. You’ve been with Jim since DEC, the DEC

days.

Tom: Yes.

Barbara: Rather than just the technology, what sort of non-technological insight

did you really get from Jim?

Tom: Well, it’s hard to pick just one, Barbara. The big thing, and it’s been a

reoccurring thing, is Jim’s ability to be able to really take really, really

 20

deep, hard concepts and distill them down to something all of us mere
mortals can understand and also act on in the whole thing. I can
remember when Bob Supnik and Jim was very fascinated by the Alpha.
We just, “How can we help? In what ways could we actually help?” And
that’s where things like a number of the benchmarks came out later on
came, to just basically be able to demonstrate the value of the Alpha. So
that is a key thing, is being able to take a really hard idea, and not only
that, boil it down but also give clear-cut examples of how that does move
the whole industry forward.

Barbara: Yeah, he’s tremendous at attribution. He’s incredible at attributing.

Tom: Well, as you know, “No good deed goes unpunished” is his motto, and…

Jim: [laughs]

Barbara: [laughs] Okay. Well, I thank you very much for giving us a little

explanation of the TerraServer and your work with Jim. I know that you
completely admire Jim.

Tom: I do, absolutely.

Barbara: And you followed him all over the Earth. [laughs]

Jim: I don’t know about that. But hey, thanks for the TerraServer.

Tom: Yeah, you bet. My pleasure.

Jim: It’s working actually.

Barbara: Thanks, Tom.

Tom: Can I come back to San Francisco? It’s cold up there. [laughs]

Jim: Please. Please! [laughs]

Barbara: Thanks, Tom.

Jim: Thanks, Tom.

Barbara: Jim, actually we…

Jim: Wow. That was good.

Barbara: Yeah. [laughs] Surprise. Actually we talked to someone else in your

group. We actually had a chance to talk to Catharine van Ingen.

 21

Jim: Oh, super.

Barbara: I want to share with you what Catharine said about working with you.

Catharine: One of the things that I stole from Jim is “Never let the best get in

the way of the better.” Every team that’s worked with me has heard me
say it. Often as engineers, we try to build the best piece of technology,
the coolest, the cleanest, the fastest, the best. And a lot of the time, that
can be really good, but making some step pragmatically forward is a much
better thing for everybody, because you learn by making that step. So it’s
that maybe the best thing wasn’t really the best. So yeah, I think that’s
definitely one of Jim’s…

Barbara: Jim, when we talked to you, you said, in preparation for this, that you

had three goals and you measure them in years. One is papers, projects
or programs, and people. How do you weight those and what are the
metrics?

Jim: Well, people are most important. When people ask, “What are you

proudest of?” you always say your family. And when you think about your
academic career or your professional career, it’s your professional family.
The way you weight that is if it’s your professional family, well, it’s how
well they’ve done professionally and how well they’ve done as people. So
I very much… I hope Mike is proud of me and I’m very proud of some of
the people that I’ve mentored. That’s the people one.

The papers is pretty easy. It’s citations. And the programs, it’s an art
form. You know when you’ve written a good program and you know when
you’ve written a bad program.

Barbara: Well, Jim, you’ve got about a decade behind each of your great

innovations. You’ve been at Microsoft about a decade and you say that
you always move on to some crazy fringe idea. Have you got one that’s
baking someplace?

Jim: Well, this eScience stuff is actually fairly new to me.

Barbara: Too new.

Jim: I’m really in the middle of it. And there’s no end in sight for it. If anything,

it’s gathering steam. It may be time to step back and let the smart people
do it now. [laughs] I’ve still got my hands full with that.

 22

Barbara: Work–life balance, a question for you. You have a daughter, you have
a grandchild at this point, you’re married. What are your hobbies? What
do you do when you’re not coming up with an aha moment?

Jim: Well, I love the out-of-doors. I sail. I love to go hiking. I read a lot. I have

friends. I spend time with my friends. But frankly I am very engaged in
what I’m doing. I try not to add up the number of hours per week. It’s a
lot.

Barbara: Well, I understand you’re never going to retire.

Jim: My plan is not to retire, but I hope they’ll kick me out when I stop being

useful.

Q & A

Barbara: Jim, now I’m going to ask you some questions that we ask everybody

and see what you have to say. The first is what kind of advice would you
give to people in the field?

Jim: Well, computer science is at the center of almost all the intellectual

disciplines. There’s a lot ferment in biology. If you drill down into it, it’s
genomics and it’s in fact computer science. It’s possible to be at the
center of almost any intellectual discipline by being in computer science.
So the first thing is be excited about the fact that you are in the center of
things. But also the advice I’d give is that it’s important to find something
that you are excited about and to focus on that. Don’t waste your life
working on stuff that doesn’t interest you. Life is too short.

Barbara: How would you explain your work to someone who is totally not

technical?

Jim: I work at Microsoft and I try to come up with ideas and products that will

make the company successful and let them continue to pay me to work at
Microsoft.

Barbara: [laughs] And also, what in life would you compare to producing

software?

Jim: We’re craftsmen. We make products and it’s amazing how hard it is to

make a product. It’s a craft.

Barbara: Another one is “You know you’re a computer nerd when…”

Jim: Well, my problem is that I’ll occasionally look up and realize that it’s

midnight and I forgot to have dinner. If you can get so engrossed in things

 23

that you sort of forget to eat, it’s maybe a bad sign. It certainly means that
you’re excited about what you’re doing and pretty involved in it.

Barbara: Now I’d like to ask you to draw your favorite data structure. You have to

draw it so we can all see it. And sign it when you’re finished. You want
me to hold it for you there?

Jim: Yeah, I do. That would be wonderful.

Barbara: Okay. Just don’t write on my arm here. [laughs]

Jim: So I puzzled about this. I knew about this question in advance. I thought

that my favorite data structure is the free pool. As you know, the free pool
has a head, which has a next pointer. And it has things in the pool, let’s
call it “A,” and A goes off and points to other things, and A has some
payload. And the free pool is currently pointing off to A.

Now the interesting thing about this free pool is you don’t own it. It’s a
pool. It’s shared between you and a lot of other people. So first question
is how do you put something in the free pool? Well, you go off and you
new a “B,” and you make B point to A. Now you want to make the head,
which was pointed at A, you want to make it point to B. Well, if you just
store B in here, all sorts of things could happen in the meantime, because
somebody could have come off and for example taken A away or they
could have added C in here. So you actually have to do what’s called
“compare-exchange,” and atomically do this – “NG” I think. And this is an
8-byte pointer, a 64-bit pointer, so you have to do the 8 version of that, and
you have to say “head.Next”, which is really head, “ref head.Next”. And
you want to make it B, and it better be A. So you have to do something
like that. You with me so far? That works fine and everybody knows that.
And now we have B here. Fantastic.

What about DQ? Well, DQ is a damn nuisance. If you want to take B
away, you want to make sure that not only is the head pointing at B but B
is pointing at A. So you can’t just do a compare-exchange A B. That won’t
work. I mean it will work, but occasionally it won’t work.

So what you actually have to do is introduce in the head the next pointer
and something called a Kilroy. And Kilroy is like the sign on the pyramid
that says, “Kilroy was here,” or a Sphinx or whatever it is. The Kilroy says,
“Somebody’s been here lately.” Every time somebody does a DQ… NQs
don’t have to worry about the Kilroy, but everybody who does a DQ is
supposed to advance the Kilroy by one. So the Kilroy starts out at zero
and every time somebody does a DQ, it gets incremented by one. So you
have to use the compare and exchange 16b, the head, and (A,1),(B,0).
And we’re going to have the… and the Kilroy’s going to start out at zero.

 24

The thing that’s amazing about this is that I MS-Searched on the web and I
found a lot of stuff about exatomic instructions. Lots of people have never
heard of the Kilroy. I actually didn’t find anybody who did this right. And if
you look in the .NET runtime, there is no 16-byte compare and exchange
because it’s not on the optirun. So this is an interesting story. [laughs]
And I learned a lot doing it, so…

Barbara: Sign it. [laughs] Can you see it? Thank you, Jim.

Jim: You’re welcome.

Barbara: Really appreciate it. [applause]

Jim: And parenthetically, when people tell you that they’re going to make

multithreaded programming easy, you got to tell them about the Kilroy and
ask them… I mean an interview question is to ask somebody what the
problem with this is. This is one of the kinds of bugs that you find the hard
way, the “hard way” being “Think about it very carefully and write the
assertions” or “Debug it again and again and again and again,” because
actually getting this to happen, it’s not going to happen very often.

Barbara: Thanks, Jim, from the Technical Community Network for being our

guest, and thanks to all of you in the audience for coming today. Thanks
again. [applause]

[end of recording]

