An Algorithm for Coding Efficient Arithmetic Operations

Robert W. Floyd

Armour Research Foundation of lllinois Institute of Technology, Chicago, lllinois

Abstract. Most existing formula translation schemes yield
inefficient coding. A method is described which reduces the
number of store and fetch operations, evaluates constant sub-
expressions during compilation, and recognizes many equivalent
subexpressions.

Most previously published algorithms for formula trans-
lation depend upon a left-to-right scan of the formula,
during which each symbol encountered either causes
generation of coding or is saved on a list until it can be
correctly interpreted in context. An exception is the GAT
translator, which scans from right to left. In coding arith-
metic operators for machines with accumulators (i.e., one-
or two-address machines), right-to-left scans potentially
generate more efficient coding than left-to-right scans. The
reason can be seen by considering the formula

x = (w0 v)/{y0:2),
where the ’s are arbitrary arithmetic operators, each im-
plemented by a single machine ingtruction. The symbolic
coding for a typical onc-address machine generated by
both types ol scan is shown below:

Left-to-right Right-to-left

CLA u CLA y
01 v 02 V4
STR T, STR T,
CLA y CLA u
0:! K ()1 v
STR T, DIV T,
CLA T, STR x
DIV T,
STR x

(9 instructions) (7 instructions)

Generally, it is desirable to compute first the right hand
argument of a division or subtraction.

When formulae contain subscripted variables, however,
a pure right-to-left scan is not yet the most efficient coding
process, whether or not index registers are used. Assume a
machine with an index register, IXR1. If 8 is a commuta-
tive operator such as - or X, the formula

x:=uflifj]é: (v w)
may be coded in two ways:

Right-to-Lejft Best coding

CLA v CLA i

0; w o J
STR T, STR IXR1
CLA i CLA v

61§ 0; w
STR IXR1 6: Us, 1
CLA Uy, 1 STR x

0, T
STR x

(9 instructions) (7 instructions)

42 Communications of the ACM

The process by which efficient coding is written foy
formulae containing subseripted variables is a bi-direc.
tional scan. The statement is examined, character by char.
acter, from left to right. During this examination, identi.
fiers and numerical constants arereplaced by single symbolg
When a right bracket is encountered, a right-to-lefs
scan Is initiated which codes the subscript or subscript
list, terminating either by storing the result in an index
register or by performing an address modification upon an
instruction. The subscripted variable is then replaced in
the formula by the symbol of the result of the coding just
generated, When a statement terminator (; or end or else
in Arcow) is encountered, a right-to-left scan is initiatect
which completes the coding of the statement. The net
effect may be loosely described by saying that subscripts
are coded first in an otherwise right-to-left scan.

For many machines best results are obtained if the above
process is used to obtain a list of two-address pseudocodes,
and the machine or assembly language coding is ther
generated from the pseudocodes in reverse order, inter-
preting the last pseudocode first. Before any pseudocode is
placed on the list, its operation and operand pair are com-
pared to all previous pseudocodes of the current formula ;
if it has appeared before, it need not be rewritten on the
list, and the symbol for its result may be replaced in the
formula by the symbol for the result of the earlier code.
At the time that machine instructions are generated from
the pseudocodes, if the symbol for the <th partial result
appears as an operand in the jth pseudocode, and ¢ is less
than 7—1, the ith pseudocode must be marked in one bit
position, to show that its result will be used at a later
stage and must therefore be transmitted to temporary
storage. Examples 1 and 2 contain examples of pseudocode
lists.

A subseript list may consist of an arbitrarily large num-
ber of subseripts. Since each pseudocode may contain a®
most two operands, it Is necessary to allow an arbitrarily
large number of pseudocodes for each subscripting oper-
ation. The convention adopted here represents x{i,j, k] by
the pseudocodes

ko0
;10
, 1.0
[x 0

Each pseudocode whose operator is a comma is associated
with the next pseudocode whose operator is a left bracket-
Subseript names appear as first operands with comm#
operators; array names, with left bracket operators. Func~
tions of two or more variables are not considered here, bu®?
could be treated in the same way. v

Storage of the symbols of the formula being encodec

will require three push-down or “yo-yo lists, and two
fixed locations. The structure of these lists, and the flow of
information between them, may be diagrammed as
follows:

T Li .’i"—“

Initially, the formula is stored in the array R; (possibly on
an inpub medium); as it is examined, each character passes
through S to the list S; (right brackets and terminators
never get past 8). During compilation, symbols are taken
from the list S; , and pass through T to the list Th.. R,,
So, and T always contain terminator symbols. A list Q is
used to store generated pseudocodes.

The flow diagram of Figures 1 and 2 embodies the tech-
niques already deseribed. Box 1 performs initialization.
Box 2 reads a character from the list R; . Boxes 3, 4, 5 and
16 assemble the letters of identifiers and replace each
identifier with an internal name. Boxes 6-15 and 1719
process constants, replacing each with an internal name.
Box 20 adds a character at the head of list 8; .

Boxes 21-40 generate coding or pseudocode. Box 23 re-
places unary minus signs by the word “neg”’; unary plus
signs are eliminated. The subroutine wrITE places gener-
ated pseudocodes on a list, and constructs a name for each
partial result. The subroutine compiLe creates pseudo-
codes for the arithmetic operators. Two other subroutines
maintain a symbol table and constant pool.

Coneatenation of symbols is represented by the @ oper-
ator. The word obtained by packing i, j, and k into ap-
propriate fields of a single word will be called (i, j, k). Set
membership is indicated as follows: S € {a, b, ‘¢’} asserts
that the symbol S belongs to one of the sets whose descrip-
tive names are a and b, or that S is the symbol c.

A genuinely efficient formula translator requires abilities
not present in the algorithm of Figures 1 and 2. First, it
should perform during compilation those arithmetic oper-
ations depending only upon constants. Second, it should
make informed decisions between floating and fixed point
representations for each constant and partial result. Third,
it should apply effectively the commutative law for ad-
dition and multiplication. Fourth, it should recognize
equivalences based upon the properties of the minus sign,
suchasa—b = —(b—a).

The first ability is essentially trivial; inspection of a type
indicator in all operands of a pseudocode discloses whether
all are constants. If so, the value is computed, stored in a
constant pool, and assigned a name; this name then re-
places the original subexpression.

The other three abilities require considerable elaboration
of the flow chart of Figure 2. Each name of a quantity will

consist of four fields: type, index, sign, and mode. The
type may be I (identifier), C (constant), Q (partial result),
or Q* (subscripted variable). The index preserves the
individuality of each name, and indicates the relative lo-
cation of the named object in one of the tables maintained

! 2
0 !

START ko SR e
Limax -0 4 w=i-1

GONST—10+CONST +
VALUE(S) -——-@

DCTR~-DCTR + DINCR

7
sj""" ‘const 27

fconst 2¢7

S, »—Tconst 3¢

®
12
—m—m-umm(s)

- tconst 377

13 14 L}

H
GONST -~ CONST »10 ¢ | CoNSTROOL E |SJ.'WEI ®

(EXP « SONEXP - DCTR)

16
3—3n
se [1ottor} 7 3 5~ 11dont. ___@
IDRNT =0
N
14 {L:]
Se{diglt, .1} 7 CONST 0 J—go1 @
SJ-‘—'conat 1t
X DCTR~—0
DINCR——0
12 EXP--0
S= o' X CONST =1 SONELP =2,
@< (NS ';':':.“‘;':'Ei’;'}’ €9, FIGURE 2 OR 3
N
20
J-jsl
e

Fia. 1

Communications of the ACM 43

44

\

@—*{Te { function, 'neg '} ’)—.@—.

0 @,
(ze{name, 17,07} 7)—(2)

28

CODE-—(1fnct ',’l‘k,T)

e (W)
T,~—T

COMPILE

p—

3l

32

CODE == (1 =1,T,,S,)

WRITE T\~ NAME

WRITE
j—31
(@)
k=K1
35 36 37
CODE~~(1,7,T,,0) S RITE k-—k-1
38 39 40
S WRITE
IS

@_.. CODE-= (' [',sj,o)

Communications of the ACM

Fic. 2a

SJ—-—NAME .___,(:)

L =—Tmax+1

COMPILE e CODE=—(T, +,T}5T) »)

k- k-2
Tk« NAME

WRITE

EXIT COMPILE

Lmax =L
Q,=— CODE

EXIT WRITE

mee—m+l

IDENT = ID ?
n

NAME ~— (tI7,m)

< EXIT SYMTBL)

mmax - m
ID ~=— IDENT
m

-
CONSTPOOL n-—1

n-—n+l

NAME =— (1G4, n)

(EXIT CONSTPOOL)

nmax ~—n
¢ _=— CONST
n

Fia. 2b

by the compiler. The sign bit allows the compiler to name
the negative of any quantity which may be named; a one
in the sign bit designates the operation of taking the nega-
tive. The mode bit distinguishes between fixed and floating
point (one and zero, respectively).

Each pseudocode consists of four fields, also:operation,
mode, operand 1, and operand 2, The mode bit distin-
guishes between fixed and floating point arithmetic oper-
ations. The operands each consist of the type and index
fields of some name. It is assumed that masking operations

allow addressing of individual fields within words; for
example, x < type (y) or mode (x) < 0.

To obtain coding with a minimum of mode conversions,
it is important to let the mode of most constants depend
upon the context within which they are used. Assuming
that the value of a constant has a fixed point representa-
tion, it should be treated in fixed point if it is connected
by an arithmetic operator to a fixed point variable or
partial result. If it is connected to a floating point variable
or partial result, it should be treated in floating point. If it

Communications of the ACM 45

T‘"SJ
31

OP =7

ARGL=—T,

ARG2 =0

SIGN = sign(ARGL)
MODE~—0

MODE-—mode (ARGL)

SISN=-—0

"‘(OP e{even function} D_.@_. SIGN =0

oPe {odd func’cion} v SIGN = o}.@.

Qp~-OF!
SIGN-—0

WRITE* T, ~— NAME

S5a " Tiw2? Syes

A

Sjﬂ_-—T; od+2*—‘exp'; 334_3
-ix13 S 64_1Lnr

Sig=")" k=k=3; §=3+8

._r(n

j+

Fia. 3a

isconnected to another constant, the value of the expression
should be obtained by the compiler, and the whole treated
as a single constant. Needless to say, a constant should
never be fixed or floated at execution time.

For operators satisfying a commutative law it is possible
to reorder the operands in a pseudocode. If a canonical
ordering is defined for all names, and each pseudocode for
addition and multiplication is written with the operands in

46 Communications of the ACM

correct order, then all subexpressions which may be shown
equivalent by repeated application of the commutative
laws will be recognized as equivalent by the translator, and
coded only once.

For a machine with an accumulator, a canonical ordering
should be so chosen that the name of the previous result
precedes any other possible operand of a pseudo-code. For
multiple-address machines without index registers, in orde!

k“le {mua/v}u:__r}W Te{u.t’ x_y} ?

®

(®) @ (D= T %'

0P=1T, —«»Gode(m) «OvOP= -/'?}.@__{ mode(ARGR =02 >_.@__..@
ARGL-—T,
ARG2+—T, ,
MODE——1 Y FLOAT?2 T el FLoam B
2 g
QOP=t-~1A MODE=0? ‘N OP = Ixt N SIGN +—|sign(ARGL) - sign(aRa2)| _]
! ALARY r ARaiETs LE WRITER Kk
T, ~—NAME

Op = Tkt-l
ARGl"Tk
ARG2 =— Tk_z
MODE-—1

mode({ ARGL }=07? N

Y] IS
= FLOAT2 B \‘f’

mode(ARG2 }=07? N

e Tk
Kka—k-1

Y ! FLOAT

E'——’(sign(AR(}l) = sign(4RG2)?

QP =—1-1

®

.

4 ORDER
ARGUMENTS
QP e—141 -
ARG2 +—ARG2?Y
K
SIGN - sign(ARG1) S| WRITE# i
x X
Qp =11 FIX 1 /sign(Aml) = 0?
ARGl‘—Tk
ARG2-—0
MODE--—1

WRITE#

__.@

QP -—QP?

/o

Fia. 3b

to minimize shifting, a modified address (i.e., the immedi-
ate result of a subscript operation) should never precede
any other type of address. One possible ordering among
'FYDCS is Q < I < C < Q*; the ordering within a given type
is the reverse of the numerical order of the indices, and is
independent of mode or sign.

The use of a sign bit in each name extends the commuta-
tive law; for example, if a prime denotes the operation of
complementing the sign bit, a—b = a+b’ = b'+a =
(b+a’)" = (b—a)’. Having computed b —a, then the com-

piler should recognize that it need not compute a—b. A

Communications of the ACM 47

WRITEs Sj"‘"'

NAME

type (NAME)-—tQut (>

FIX1:

[0}] [t
ARGL =S 3
ARG2=—0
MODE =-mode(ARGL)
SIGN=—0
P et MODE = 07 N
@ ARGY ‘—Tk
ARG2~e— Sj
MODE~- mode{ ARG2) FLOAT1

gign{ ARG1)=07

OP a— t—neg?

END OF FORMULA

N 1

¥

m.. CODE ~— (0P, MODE, ARG1, ARG2)' —oC_wBﬂE_D

does CODE
represent a
constant?

Lmax CONST = ;
L~— +1 value (CODE) i CONSTPOOL
Lmax =L NAE —(1Q 4L, |
. — Qy~— CODE SIGH, HODE)
La—I41

EXIT from

WRITE,

WHITE#
- MODE =-0 ‘ ' -

o SIGN-—sign(ARGL) mode(ARGL)=0?
mode({ ARGL)=—0
Com = -®
CODE‘_(tfloat?’, O, ARGL, 0)
l
nmax ot] e B ARGL~—NAUE
5 -
“’lG n> ? Y TARIN OR,
OTHER ACTION
EXIT from
FLOATL
MODE-—MO
N TDENT = ID ? - X
. NAME—=—('I*,m,0,mode)
: e () EXIT from
STMTEL
Fic. 3¢

48 Communications of the ACM

{ consTPOOL J

Has CONST a
fixed point

representation?

EXIT from
0!

NAME - ('C *,n,0,MODE) CORSTFOUL

Fia. 3d

typical example of the saving accomplished through use
of the sign bits is shown below.
wi=x—y X 2

Without sign bit Using sign bit

CLA y CLAy or CLA Yy

MLY =z MLY z MLY z

STR t¢ SUB x SUB x

CLA x STN w CLS accumulator
SUB t; STR w

STR w

The pseudocodes generated by this example, and the suc-
cessive states of the formula, are shown below:

w = x—y X z O X, 5,2

w = x—Q

w o= X-+Qi

w o= Qi +x Q2 -, Ql, X
wo= Qe Q: — neg, Q», w

Every subtraction a—b is always rewritten as an addition
a-+b’. The operands may then be placed in the canonical
order. The procedure described is particularly efficient
upon a machine with a store negative command. Without a
store negative command, a more limited use should be
made of the sign bit.

Figure 3 presents a compilation algorithm having all the
abilities listed above. The rules of decomposition for
formulae closely correspond to those used by Figures 1
and 2; in fact, Figure 1 is common to both algorithms. For
the remainder, there is a rough correspondence between
Figure 2 and Figure 3. Wherever possible, remote con-
nectors in corresponding positions have been given identi-
cal names.

The subroutine ¥roaT 1 has been added to the process
to convert the first operand of a pseudocode to floating
point where necessary. Two analogous subroutines, FLOAT 2
and F1x 1 may be diagrammed by simple symbol substi-
tutions in FLoar 1 and therefore are not shown. The WRITE
subroutine now bears the responsibility for detecting
arithmetic pseudocodes all of whose operands are con-

stants, evaluating the pseudocode, storing the value in the
constant pool, and assigning a name to the result.

The compiLE subroutine of Figure 2 has disappeared
from Figure 3; the arithmetic operations are too thoroughly
differentiated in their transformation rules to allow a com-
mon compilation sequence for all. The symbol table and
constant pool subroutines have been modified to create the
new name structures used by Figure 3.

ExamerE 1: Application of Figures 1 and 2 to the formula

begin x :=y + z1 X uend

8 « ‘begin’ ; 8, « ‘begin’
S % ; 8« fident’ ; IDENT « 0 ; IDENT « %’
Se =7 Dy« X NAME « ‘I ; Sy« ‘Iy
S3 — f=7
Sy S« ‘dent’ ; IDENT « 0 ; IDENT « ‘%’
S e 4 5 1Dy« %y NAME « Iy ; 8, « 1Y
S{’ — K+7
S« ‘7’ S « ‘ident’ ; IDENT « 0 ; IDENT « %’
8«1 IDENT « ‘21’
8§ X’ 1D; « ‘z1’ NAME « Iy ; 8« ‘LY
S7 — (X?
S e 8 « ‘ident’ ; IDENT « 0 ; IDENT « ‘W’
Se‘end’ ; ID;e ‘W NAME « ‘I Sg — ‘1Y

At this point the S-list contains
lbegillsl1l2=‘Ig\‘f‘“glxlhi

T ‘.14’ '1‘1 = ‘[4’

T e ‘X’ ; Ty — e

T e ‘13, 3 T'g « ‘Is,

T ‘+’ 3 CODE « (‘X,, ‘I:g’, ‘14’) 5 Q1 A (‘X’, ‘Igy, ‘I4?)
NAME « ‘Q’ ; Tie Q5 Toe ‘4

T - ‘Ig’ 5 T;; Rl ‘I;”

T =" ; CODE « (‘4 12, Q) ; Q « (4, ‘I, ‘Q)
NAME « Q2 ; Tie‘Q’ ; CODE « (=, ‘Q), ‘L)

Qs « (=, ‘Q, ‘L) 5 NAME « Q¢

At this point compilation terminates, the Q-list con-
taining:
Ql 0 X I; I4
Q : + L Q
Q : — Q L

Communications of the ACM 49

Ixanmpre 2: Application of Figures 1 and 3 to the formula
begin x[i X j} :=y — z + 13/{z—y) end

It is assumed that all identifiers have been declared, and
are stored in the symbol table as follows:

1D, 1 (mode = 1)

[, i (mode = 1)

1, x (mode = 0)

I, v {mode = ()

L), z (mode = ()
S « ‘begin’ ; S8, « ‘begin’
8 e X Sy ‘ident’ IDENT & 0 ; IDENT « %
S e P NAME «— ‘Iy ; Sy Iy 5 Sy«
8o S e fident” 5 IDENT «- 0 ; IDENT « @
S e %" ; NAME « ‘I ; S; ‘I’ S5 e X
S e 7 S+ fdent’ 5 IDENT « 0 ; IDENT e §°

S —) ; NAME « 1y Ng ‘L
T e Iy T« ‘L
T e ¢’ Ty - 6%
Tedy ;5 Tyl
T e OP « X' 5 ARGl « ‘I ; ARG2 « ‘1Y

MODE - 1

ARGL « Iy 5 ARG2 « ‘I,
CODE « (X7, 1, Iy, 1,")

Qe (X, 1, ‘I, Iy 5 NAME « ‘Q¢
OP « 4

ARGl « Q0 5 ARG2 0 ;
CODE « (7,1, ‘Q/, 0)

Q: — (7, 1, ‘Qr, 0) ; NAME « Q)
ARGI « ‘[:cy

ARG2 «- 0 ; MODE « 0

Q3 A <‘[’7 0, ‘L‘yy 0)
Sz o ‘(\2;,

SIGN «- 0

T
MODE « 1
;0P e

;. CODE « (0", 0, Iy, 0)
NAME « Q" ; NAME « ‘Q3

S e =" 8y e =7

S ey 5 8 « fQdent’ ; IDENT « 0 ; IDENT « '

Se =1 o NAME « Iy 5 Sqe ‘1) 5 8S;e =7

S ‘" ; Sse-ddent’” ; IDENT « 0 ; IDENT «- ‘2’

S e 47 5 NAME e Iy 5 S « Iy 87 « ‘7

S o« a1 S « ‘constl” ; DCTR «— 0 ; DINCR « 0
EXP -0 ; CONST 1

S« 2 5 DINCR « 1

8«9 ; CONST «— 13 ; DCTR « 1

S« 5 CONST 1.3 ; Cie1.3 ; MODE «0

NAME « ‘Cp Sg e “Cy 5 8g ¢/’

S 5 By e

S ‘27 5 8y« ‘ident’; IDENT « 0 ; IDENT « @

S e o NAME « Iy Sp« ‘I 5 Sp e =7

S ey’ S - ‘Adent’ ; IDENT « 0 ; IDENT « ‘y’
S« ¢y NAME « Iy Si « ‘LY S 4

S« ‘end’

At this point the S-list contains

Ibegin|Qil:=L|— L]+

Cl/(L L))

T e (), r[‘l — r)}

T L5 Ty e I

T em ¢ ; r[‘:i"""“y

V.l‘ Al ‘I;,’ 5 '1‘4 R ‘I{,y

T ¢ OP « “—7 ; ARGl « Iy ; ARG2 « ‘I

MODE «1

MODE «0 SIGN «— 0 ; OP « 4+’ ; ARG2 « 17

OP « ‘= 3 SIGN « 0 ; CODE « (=, 0, ‘I, ‘Iy)
Qi — (=2, 0, ‘I, ‘I7) ; NAME « ‘Q/ ; To« ‘Q/
Ty« Qs
’[‘(__(/? TQ".“/y
T ‘Cly ; T3 — ‘017
T e 4 5 OP « /7 ; ARGl « ‘C; ; ARG2 « Q¢

50 Communications of the ACM

MODIS - 1

MODE « 0 ; SIGN « 0 ; CODIE e (¢, 0, ‘C/, Q)

Qo = (0,0, Co, Q) 5 NAME e Q) 5 Ty e Qy
Ty e i

— Iy Ty e LY
T e €2 : 1‘4‘*“"*’
T e Ly Tye Ly
T e =7 5 OF « ‘=7 ¢ ARGl « ‘I, ; ARG2 « Iy

MODE 1
MODE «0 ; OP e &
ARG2 « Iy ; OP « =
CODE « (=7, 0, ‘I, ‘1)
NAME — Q7 3 Ty Q™
ARGE2 Q5" ; MODIE—1
ARG2 «— Qe 5 OF e =’
CODIE « (=7, 0, 0y, Q)
Qs = (*=", 0, 'Qs, ‘Q) 5 NAME «— ‘Qy
QP e '
ARGL — Qs ; ARGY2 — @y’
CODE « (‘= 0, ‘Qy, ‘Qs")
NAME « Q7

ARG2 « ‘I
SIGN « 1

) ARG ‘];

3

OP « ‘4
MODE «0
; SIGN < 0

ARGL e gy
;o ARG e~y

Ty e Qp
MODI « O

)

At this point compilation terminates, the Q-list con
taining

Q X 1 L L

(\22 N 3 1 (2 L ()
(—}:c N [() I;; U
Qs — 0 1 L
Qs /0 C Qe
Qs - 0 Qs Qu

O : — 0 Qs Q

For a typical single address machine, the above pseudo-
codes might generate the following symbolic coding:

CI;A j
MLY 1

STR IXRI1
CLA 7

FSB y
STR t
CLA constl
FDV ty
FSB ty
STR X, 1

RESTRICTIONS

In the last example, the symbolic coding gencrated is af
least comparable to the results of hand coding. Other ex:
amples, however, could disclose the limitations of the
algorithm. Its inability to apply the associative laws may
result in unnecessary mode conversions and storage of
partial results in computing sums or products of quantities
of unlike modes. In justification, it may be said that float-
ing-point arithmetic is only approximately associative. Its
inability to recognize equivalent subexpressions containing
subseripted variables is a more serious drawback, and more
nearly intrinsic to the algorithm. Finally, no provision has
been made to recognize integral constant exponents. Most
existing compilers waste time extravagantly by using
exp (2 X In (x)) to compute x T 2. It is possible to rewrite.
such expressions to be evaluated by a small number of
multiplications. For example, y T 9 may be written

((y X) X Xy Xy Xy) X Xy X ()

The disposition of the parentheses is computed by number-
ing the multiplication signs consecutively. If 1 is divisible
by 2% but not by Qk‘“‘, then the nth multiplication sign is
preceded by k right parentheses, and followed by k left
parentheses. If the last multiplication sign is numbered m,
then the entire expression is surrounded by k parentheses,
where 25 > m. The extension to negative integral expo-
nents is obvious. The rewritten expressions are compiled in
the normal manner, the equivalent subexpressions being
automatically recognized.

An operational translator would require additional tests
at several points to detect symbol strings not allowed by
the language. Such tests are omitted here for the sake of
clarity in the flow charts.

ACKNOWLEDGMENT
The author is indebted to Arthur Anger, presently at
Harvard University, for many helpful criticisms and sug-
gestions, and for coding the algorithm on the Univac
1105.
REFERENCES
1. Ersunov: Programming Programme for the BESM Computer.
Pergamon, 1959,
2. WeserelN, J. H. From formulas to computer oriented language.
Commny. ACM 2 (Mar, 1959), 6~8.
3. ArpeN, B., and Graram, R. On GAT and the construction of
translators. Comm. ACM 2 (July 1959), 24-26.
4. Kanwer, H. An algebraic translator. Comm. ACM 2 (Oct. 1959),
19-22.
. SameLsoN, K, and Baver, F. L. Sequential formula translation,
Comm. ACM 3 (Feb. 1960), 76-83.

[

A Syntax Directed Compiler for ALGOL 60°

Edgar T. lrons¥

Princeton University, Princeton, N. J.

Although one generally thinks of a compiler as a program
for a computer which translates some object language into
a target language, in fact this program also serves to define
the object language in terms of the target language. In
early compilers, these two functions are fused inextricably
in the machine language program which is the compiler.
This fusion makes incorporation into the compiler of ex-
tensions or modifications to the object language extremely
difficult.

This paper describes a compiling system which es-
sentially separates the functions of defining the language
and translating it into another. Part | presents the meta-
language used to define the object language in terms of the
target language. This meta-language is an extension of the
syntax meta-language used in the Arcor 60 report which
allows specification of meaning (in terms of the target lan-
guage) as well as of form. This sucecinet definition allows
modifications to the form or meaning of the object language
to be incorporated easily into the system, and in fact
makes the original specification of the object language a
reasonably easy task. Part 2 is a description of the program

*This report was supported, in part, by the Office of Naval
Research under Countract Nonr-1858(22). Reproduction, transla-
tion, publication, use and disposal in whole or in part by or for
the United States (iovernment is permitted.

t The work leading to this report was done while the author
was employed principally by Princeton University and later by
the Communications Division of the Institute for Defense
Analyses, Princeton.

which utilizes a direct machine representation of the meta-
linguistic specifications to effect a translation.

Before proceeding to a description of the meta-language
we wish to demonstrate heuristically that the proposed
meta-language does suffice to specify a translation for any
language it can describe. If one proposes to translate lan-
guage A into language B, it is necessary to have some kind
of description of language A in terms of language B. More
specifically, one must be able to describe the alphabet of
A in B, and must have a set of rules for assigning meaning
in B to various possible structures which can be formed in
A by concatenating the characters of A’s alphabet. The set
of rules might be called the syntax of language A, if one
considers definitions (in the usual sense of the word) to be
merely additional rules of syntax. A translation process
might then be to start with the beginning symbols of the
string to be translated and to assign meaning and a new
syntactic name to symbol groups as they fall into the
several syntactic structures. Having thus formed a new
set of syntactic elements, the next stepis to modify the
meanings or amplify them according to the new structures
into which these syntactic elements fall. If one considers
the characters of the alphabet to be syntactical units them-
selves, the two steps in the process are indeed indentical.
Evidently the only restriction necessary to make such a
description uniquely specify a language is that there be a
unique syntactic structure for any possible finite string of
symbols in the language.

Communications of the ACM 51

