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FOREWORD 

The electronic computer has greatly contributed to scientific research; 
it has reduced costs, shortened time scales, and opened new areas of 
investigation. Increased use of computers, in turn, has crea,ted a need 
for better computers. What is desired most often is a general-purpose 
design with the best achievable memory capacity, speed, and reliability. 

User experience has shown the need for considering more t,han these 
fundamental properties in the design of a new computer. Unlike earlier 
machines, whose capabilities were mainly functions of the properties of 
individua1 components and units and not to any marked extent of their 
organization or the user's requirements, the Stretch computer is based 
on a comprehensive joint planning effort involving both users and 
designers. Their combined experience brought in many new considera- 
tions. The term genera1 purpose was given a broader definition in 
Stretch. Areas of special concern included the vocabulary of the com- 
puter, parallel operation for greater speed and efficiency, error detection 
and correction, and recovery from errors and other exceptional events. 

The design phase for a new-generation computer is always a difficult 
one. The potential user cannot predict accurately how the new t001 
will be used or what new areas of research will open up. The designers 
have to work with components for which such important data as how 
these components behave en masse are lacking. The Stretch project, 
in design as well as construction, has been successfully concluded. The 
degree of success, however, can only be ascertained as experience in using 
Stretch is accumulated. 

This book forms a record of what is probably the first really comprehen- 
sive design effort for a new computer. I t  was written and edited by a 
very competent group from the technical staff of the IBM Corporation, 
including most of the principal designers of Stretch. 

There is no doubt that still better computers will be needed. Although 
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the Stretch computer is now solving problems that could not be solved a 
few months ago, many problems are known to exist for which even 
Stretch is inadequate. This book will be invaluable as a guide and 
reference source for computer development in the future. 

Bengt Carlson 
Los Alamos Scientific Laboratory 

September 1961 



PREFACE 

Planning a computer system ideally consists of a continuous spectrum 
of activity, ranging from theoretically analyzing the problems to be 
solved to evaluating the technology to be used for the components. 
When dealing with an electronic digital computer of more than modest 
size that is intended to be used for fairly complex applications, one is 
forced to split the planning spectrum into arbitrary segments, each seg- 
ment being developed with due regard for its neighbors. This book is 
mainly concerned wit,h that segment that has to do with the selection of 
an instruction set and related functional characteristics of a computer. 
Except for cost and speed, these are the characteristics that do most to 
distinguish one computer from the next. 

This book is about the planning of a specific computer. Being specific 
has both advantages and drawbacks. On one hand, the book reflects 
the thoughts of one group, not the entire state of the art. It cannot be a 
compendium of al1 the ideas, features, and approaches that have proved 
interesting and useful in various computers. On the other hand, con- 
centration on one design serves to crystallize the concepts in a way that 
would be difficult to do with a hypothetical computer designed for the 
sake of exposition. Moreover, a specific computer represents compro- 
mises in bringing diverse and complex considerations together into a 
coherent working entity, and these practical compromises are instructive 
in themselves. 

Although the discussion is in terms of a specific computer, the concepts 
discussed are quite general. The computer chosen is the IBM 7030. 
It is a recently developed computer incorporating many of the latest 
advances in machine organization, and a number of these advances are 
origina1 or greatly improved over earlier versions. It is also a very large 
and very fast computer. There is an advantage in choosing such a large 
computer for examination, for it is practical to include quite a rich 
vocabulary in large computers, and this affords an opportunity to exam- 
ine features which may not al1 be so readily incorporated in a single com- 
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puter of smaller size. The 7030, in particular, combines computing and 
data-processing facilities that were previously available only in separate 
computers. Thus a large computer may serve as a mode1 from which to 
select or adapt features for use in a smaller computer. 

The 7030 computer was the outcome of Project Stretch, an IBM 
research and development project aimed a t  a major advance in computer 
technology and organization. To achieve a substantially improved com- 
puter organization required more than a mere compilation of the best 
features in existing machines and of new features already known. In 
the hope of stimulating ideas for substantial improvements i t  was 
decided to explore very thoroughly the basic structure of computers. 
Severa1 of the participants in these studies published papers, from time to 
time, on computer organization in genera1 and on particular conclusions 
drawn for Project Stretch. This book consists partly of such material, 
updated and edited for c~nt~inuity. Much previously unpublished 
material has been added to fill in major gaps. 

The book is intended to complement the reference manual for the 
7030,l although enough of the details of t'he 7030 are summarized in the 
text or in the Appendix that the 7030 Reference 'Iaiiual is not required for 
understanding the material in this book. Where the manual recites in as 
much detail as possible what the system does, this book is aimed a t  shed- 
ding light on how i t  is done and why the system was designed the way i t  
is, as well as describing some alternative courses that were examined and 
rejected. 

The book does not attempt to dea1 adequately 114th details of the design 
and construction of the computer a.nd its coniponents, since these rnight 
well fill another volume. Nor does it cover the programming techniques 
used in the extensive compiling and supervisory programs written for the 
system. 

The book is aimed a t  a reader who already has a reasonably good 
knowledge of how a stored-program computer is organized and pro- 
grammed. It may also serve as an advanced text to follow an elementary 
course on digital computers. 

Contents oF Book 

Chapter 1 is a short history of Project Stretch. Chapter 2 outlines the 
philosophy that guided the design of the system. I t  emphasizes the need 
for a consistent point of view among those responsible for the basic plan 
of as complex a system as this computer. 

A summary of the system in narrative form is given in Chap. 3. This 
is intended to give the reader a fairly complete picture of the forest before 

l "Reference Manual, 7030 Data Processing System," IBM Data Proceseing Divis- 
ion, White Plains, N.Y. 



he looks a t  the trees. Most of the materia1 in this chapter is covered 
again in detail in later chapters. 

Chapter 4 discusses different classes of data and the need for different 
ways of specifying each class. Chapter 5 gives the reasons for designing 
what is basically a binary strutture, alihough there are provisions for both 
binary and decimal arithmetic. 

Chapter 6 considers the choice of a new character set and code for the 
7030, which provides 120 characters, including many not available before, 
such as those of the lower-case alphabet. I t  may be noted that the 7030 
system is quite flexible with regard to character sets and is not tied to 
the set described here. One reason for writing this chapter is that the 
reasoning is pertinent to current industry-wide code standardization 
efforts, and it may be found useful as input to these important 
deliberations. 

Chapter 7 covers the extensive variable-field-length features of the 
7030, which are used for fixed-point binary and decimal arithmetic, for 
alphanumeric processing, and for Boolean logic. Chapter 8 describes 
the floating-point-arithmetic operations, which deserve much more than 
the routine treatment they so often receive if numerous pitfalls areJ-to be 
avoided. Between them, Chaps. 7 and 8bridge the traditionally separate 
domains of the "business" and "scientific" computers. 

In Chap. 9, the reason for the rather complex instruction formats used 
in the 7030 is explained. Chapter 10 deals with various methods 
available to the programmer for specifying the logica1 sequence of instruc- 
tions. (This should be distinguished from the interna1 rearrangement of 
this sequence to achieve overlapped operation, as described in Chaps. 
14 and 15.) Included in Chap. 10 are origina1 techniques for program 
interruption and for executing instructions outside the current instruction 
sequence. This execute feature, incidentally, is one of several examples 
where a new technique developed originally on Project Stretch carne to 
light first in another IBM computer (here the 709) that happened to be 
built on an earlier schedule. 

Chapter I l  covers a thorough investigation of indexing, which resulted 
in the development of the control-word technique for processing records 
and for controlling program loops. A genera1 method for controlling 
input-output units that is independent of the precise nature of the device 
is discussed in Chap. 12. 

Chapter 13 gives an introduction to the fairly recent subject of multi- 
programming, which is the simultaneous execution of several problem 
programs. I t  shows how the design of the 7030 was heavily influenced 
by the desire to exploit multiprogramming for more efficient utilization of 
the computer and for better man-machine communication. 

The next three chapters give a brief survey of the construction of major 



parts of the system to round out the picture. Chapter 14 deals with the 
various parts of the centra1 processing unit, the circuits, and the method of 
construction. One part of the centra1 processing unit, which has been 
called the loolc-ahead, receives more detailed treatment in Chap. 15, since 
it represents a major departure from the design of earlier computers. 
Chapter 16 explains the input-output exchange which controls the inde- 
pendent operation of a number of input-output channels. 

Chapt'er 17 describes the IBM 7951 Processing Unit, which extends 
but is not a part of the Stretch system, having been developed under a 
separate contract. The 7951 introduces a completely nelv concept of 
nonarithmetical processing, which is a much more powerful t001 for oper- 
ating on norinumerical data than previous techniques. The complete 
system includes an entire 7030 computer, al1 of whose facilities are availa- 
ble for more conventional procedures. I t  seemed appropriate to include 
in this book a t  least a brief account of a contemporary project related to 
Stretch. 
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Chapter 1 

PROJECT STRETCH 
by W. Buchholz 

The computer that is discussed in this book was developed by the 
International Business Machines Corporation a t  Poughkeepsie, N.Y., 
under Project Stretch. The project started toward the end of 1954. 
By then IBM was producing severa1 stored-program digital computers: 
the IBM 650, a medium-sized computer; the IBM 704, a large-scale 
computer primarily for scientific applications; and the IBM 705, a large- 
scale computer primarily for business data processing. The 704 and 705 
had already superseded the 701 and 702, which were IBM's first com- 
mercial entries into the large-computer field. Since the entire field was 
still new, there had been little experience on which to base the design of 
these machines, but by 1954 such experience was building up rapidly. 
This experience showed that the early computers were basically sound 
and eminently usable, but it was also obvious that many of the early 
decisions would have been made quite differently in 1954 and that many 
improvements had become possible. 

At the same time, solid-state components were rapidly being developed 
to the point where it appeared practical to produce computers entirely 
out of transistors and diodes, together with magnetic core memories. A 
computer made only of solid-state components promised to surpass its 
vacuum-tube predecessors with higher reliability, lower power consump- 
tion, smaller size, lower cost made possible by automatic assembly, and 
eventually greater speed. The irnminence of new technology, together 
with the knowledge of shortcomings in existing designs, gave impetus to 
a new computer project. 

In  1955 the project was directed more specifically toward achieving, 
on very large mathematical computing problems, the highest perform- 
ance possible within certain limits of time and resources. If mostly 
on-the-shelf components were used, a factor-of-l0 improvement over the 
IBM 704, the fastest computer then in production, appeared feasible. 
Although this leve1 of improvement would have been a respectable 
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achievement, it was rejected as not being a large enough step. Instead, 
an over-al1 performance of 100 times that of the 704 was set as the target. 

The purpose of setting so ambitious a, goal was to stimulate innovation 
in al1 aspects of computer design. The technology available in 1955 was 
clearly not adequate for the task. Xew transistors, new cores, new logi- 
cal features, and new manufacturing techniques were needed, which, 
although they did not yet exist', were known to be a t  least physically 
possible. Even though the goal might not be reached in al1 respects, the 
resultant machine would set a new standard of performance and make 
available t'he best technology that could be achieved by straining the 
technical resources of the laboratory. IIence the name Project Stretch. 

The need for a computer of the power envisioned was clear. ,4 num-
ber of organizations in the country had many important computing prob- 
lems for which the fastest existing computers were completely inadequate, 
and some had other problems for which even the projected computer of 
100 t,imes the speed of the existing ones would not be enough. Segoti-
ations with such orgaiiizations resulted in a contract with the U.S. Atomic 
Energy Commission in late 1956 to build a Stretch system for the Los 
Alamos Scientific Laboratory. 

The early design objectives were described in 1956' in terms of certain 
technological and organizational goals: 

Performance 

An over-al1 performance leve1 of 100 times that of the fastest machines 
then in existence was the genera1 objective. (I t  has since become evi- 
dent that speed comparisons of widely different machines are very diffi- 
cult to make, so that it is hard to ascertain how well this target has been 
achieved. Lsing the IBM 704 as the reference point, and assuming 
problems that can easily be fitted to the shorter word size, the srnaller 
memory, and the more limited repertoire of the 704, the speed ratio for 
the computer actually built falls below the target of 100. On the other 
hand, for large problems which strain the facilities of the 704 in one or 
more ways, the ratio may exceed 100.) 

Reliability 

Solid-state components promised t'he much higher reliability needed 
for satisfactory operation of a necessarily complex machine. 

Checking 

Extensive automatic checking facilities were intended to detect any 
errors that occurred and to locate faults within narrow limits. Storage 
devices were also to be equipped with error-correction facilities to ensure 

S. W. Dunwell, Design Objectives for the IBM Stretch Computer, Proc. Eastern 
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that data could be recovered in spite of an occasiona1 error. The pur- 
pose was again to increase performance by reducing the rerun time often 
needed in unchecked computers. 

Generality 

To broaden the area of application of the system and to increase the 
effectiveness of the system on secondary but time-consuming portions 
of any single job, it was felt desirable to include in one system the best 
features of scientific, data-processing, and real-time contro1 computers. 
Furthermore, the input-output controls were to be sufficiently genera1 to 
permit considerable future expansion and attachment of new input-output 
devices. 

High-speed Arithmetic 

A high-speed parallel arithmetic unit was to execute floating-point 
additions in 0.8 microsecond and multiplications in 1.4 microseconds. 
(The actual speeds are not as high, see Chap. 14.) This unit would not 
be responsible for instruction preparation, indexing, and operand fetch- 
ing, which were to be carried out by other sections of the system whose 
operation would overlap the arithmetic. 

Edit ing 

A separate seria1 computer unit with independent instruction sequen- 
cing was visualized to edit input and output data of variable length in a 
highly flexible manner. (It  was later found desirable to combine the 
seria1 and parallel units to a greater degree, so that they are no longer 
independent, but the functional capability of both units was retained.) 

The main memory was to have a cycle time of only 2 microseconds. 
(Al1 but the early product'ion memories will indeed be capable of work- 
ing a t  2.0 psec, but computer timing dictates a slightly longer cycle of 
2.1 psec.) The capacity was to be 8,192 (later raised to 16,384) words 
per unit,. 

Input-Output Ezchange 

A unit resembling somewhat a telephone exchange was to provide 
simu1taneous operation of al1 kinds of input-output, storage, and data- 
transmission devices. 

l A second set of faster, though smaller, memory units was also postulated, but it 
was later omitted because the larger units were found to give about the same over-al1 
performance with a greater capacity per unit cost. These units are still used, however, 
to  satisfy more specialized requirements of the T951 Processing Unit described in 
Chap. 17. 



High-speed Magnetic Disks 

Magnetic disk units were to be used for external storage to supplement 
the interna1 memory. The target was a capacity of 1 (later raised to 2) 
million words with a transfer rate of 250,000 (later lowered to 125,000) 
words per second. These disk units permit a very high data flow rate 
(even a t  the lower figure) on problems for which data cannot be con- 
tained in memory. 

As the understanding of the task deepened, this tentative plan was 
modified in many ways. The functional characteristics of the actual 
computer were developed in the years 1956 to 1958. This planning 
phase, which is likened in Chap. 2 to the work of an architect planning 
a building, culminated in a detailed programmer's manual late in 1958. 
During the same period the basic technology nTas also established. A 
number of changes were subsequently made as design and construction 
progressed, but the basic plan remained as in 1958. 

The Stretch computer is now called the IBM 7030. I t  was delivered to 
Los Alamos in April, 1961. Severa1 other i030 systems were under con- 
st'ruction in 1961 for delivery to other organizations with a need for very 
large computers. We shall leave it to others to judge, on the basis of 
subsequent operating esperience, how closc the computer comes to satis- 
fying tihe origina1 ob jectives of Project Stretch. 



ARCHITECTURAL PHILOSOPHY 
by F. P. Brooks, Jr. 

Computer architecture, like other architecture, is the art of determin- 
ing the needs of the user of a structure and then designing to meet those 
needs as effectively as possible within economic and technological con- 
straints. Architecture must include engineering considerations, so that 
the design will be economica1 and feasible; but the emphasis in architec- 
ture is upon the needs of the user, whereas in engineering the emphasis is 
upon the needs of the fabricator. This chapter describes the principles 
that guided the architectural phase of Project Stretch and the rationale 
of some of the features of the IBM 7030 computer which emerged. 

2.1. The Two Objectives of Project Stretch 

High Perfornzance 

The objective of obtaining a major increase in over-al1 performance 
over previous computers had a triple motivation. 

l. There were some real-tinie tasks with deadlines so short that they 
demanded very high performance. 

2. There were a number of very important problems too large to be 
tackled on existing computers. In principle, any general-purpose com- 
puter can do any programmable problem, given enough time. In prac- 
tice, however, a problem can require so much time for solution that the 
program may never be "debugged" because of machine malfunctions and 
limited human patience. Moreover, problem parameters may change, 
or a problem may cease to be of interest while i t  is running. 

3. Cost considerations formed another motivation for high perform- 
ance. It has been observed that, for any given technology, performance 
generally increases faster than cost. A very important corollary is that, 
for a fully utilized computer, the cost per unit of computation declines 
with increasing performance. I t  appeared that the Stretch computer 
would show accordingly an improved performance-to-cost ratio over 

5 




earlier comput'ers. It appeared, further, that some computer users did 
indeed have sufficient work to occupy fully an instrument of the pro- 
posed power and could, therefore, obtain economic advantage by using 
a Stretch computer. l 

I n  addition to being fast, the Stretch computer was to be truly a 
general-purpose computer, readily applicahle to scientific computing, 
business data processing, and various large information-processing tasks 
encountered by the military. In 1955and 1956, when the genera1 objec- 
tives of Project Stretch were set, it was apparent that there existed a few 
applications for a very-high-performance computer in each of these areas. 
There is no question that the new computer could have been made a t  
least twice as fast, with perhaps no more hardware, if it had been special- 
ized for performing a very few specific computing algorithms. This 
possibility was rejected in favor of a general-purpose computer for four 
reasons, each of which would have sufficed: 

1. Xo prospect'ive user had al1 his work confined to so few programs, 
nor could any user be sure that his needs would not change significantly 
during the life of the machine. 

2. If a computer were designed to perform well o11 the entire class of 
problems encountered by any one user, the shift in balance required to 
make it readily applicable to other users would be quite small. 

3. Since there existed only a few applications in each specialized area 
and since the development costs of a computer of very high performance 
are several tlimes the fabrication costs, each user would in fact be acquir- 
ing a general-purpose computer (containing some hardware he did not 
especially need) more cheaply than he could have acquired a machine 
more precisely specialized for his needs. 

4. Since there are rea1 limitations on the skillcd manpower and other 
facilities available for development efforts, it would not have been possi- 
ble to develop several substantially different n~achines of this performance 
class a t  once, whereas it was possible to meet a variety of needs for very- 
high-performance computers with a single machine. 

In  sum, t'hen, Project Stretch $17as to result in a very-high-performance, 
general-purpose information-processing system. 

2.2. Resources 

A sharp increase in computer performance does not spring solely from 
a strong j~stificat~ion I t  appeared for it ;new technology is indispensable. 
that expected technological advances would permit the design to be based 
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upon new core memories with a 2-microsecond cycle time, new transistor 
circuits with delays of 10 to 20 nanoseconds (billionths of a second) per 
stage, and corresponding new packaging techniques. The new transistor 
technology offered not only high speeds but a new standard of reliability, 
which made it nst unreasonable to contemplate a machine with hundreds 
of thousands of components. 

In order to complete the computer within the desired time span, it was 
decided to accept the risks that would be involved in (1) developing the 
technology and (2) designing the machine simultaneously. 

The new circuits would be only ten to twenty times as fast as those of 
the 704, and the new memories would be only six times as fast. Obvi-
ously, a new system organization was required if there was to be a major 
increase in performance. I t  was clear that the slow memory speed would 
be the principal concern in system design and the principal limitation on 
performance. This fact influenced many decisions, among them the 
selection of a long memory word, and prompted the devotion of con-
siderable effort to maximizing the use of each instruction bit. 

Proj ect Stretch benefited greatly from practical experience gained with 
the first generation of large-scale electronic computers, such as the IBM 
700 series. Decisions made in the design of these earlier computers had 
necessarily been made without experience in the use of such machines. 
At the beginning of Project Stretch the design features of earlier macll' l ines 
were reviewed in the light of subsequent experience. It should not be 
surprising that a number of features were found inadequate: some con- 
siderations had increased in significance, others had diminished. Thus 
it was decided not to constrain Stretch to be program-compatible with 
earlier computers or to follow any existing plan. A completely fresh 
start meant extra architectural effort, but this freedom permitted many 
improvements in system organization. 

A wealth of intensive experience in the application of existing com- 
p u t e r ~was made available by the initial customers for Stretch computers. 
From these groups came ideas, insight, counsel, and often, because the 
groups had quite diverse applications, conflicting pressures. The diver- 
sity of these pressures was itself no small boon, for it helped ensure adher- 
ence to the objective of genera1 applicability. 

2.3 .  Guiding Principles 

The universal adoption of severa1 guiding principles helped ensure the 
conceptual integrity of a plan whose many detailed decisions were made 
by many contributors. 

The objective of economic efficiency was understood to imply mini- 
mizing the cost of answers, not just the cost of hardware. This meant 



repeated consideration of the costs associated with programming, compi- 
lation, debugging, and maintenance, as well as the obvious cost of machine 
time for production computation. A consequent objective was to make 
programming easier-not necessarily for trivial problems, but for prob- 
lems worthy of the computer, problems whose coding in machine language 
would usually be generated automatically by a compiier from statements 
in the user7s language. 

A corollary of this principle was the recognition that complex tasks 
always entail a price in information (and therefore money) and that this 
price is minimized by selecting tahe proper form of payment-sometimes 
extra hardware, sometimes extra instruction executions, and sometimes 
harder thought in developing programming systems. For example, the 
price of processing data with naturally diverse lengths and structures is 
easily recognized (see Chap. 4). This price appeared to be paid most 
economically in hardware; so very flexible hardware for this purpose was 
provided. Similarly, protection of memory locations from unwanted 
alteration was accomplished much more economically with equipment 
than it  would have been wit,h programming. A fina1 minor example is 
the STORE VALUE IN ADDRESS~operation, which inserts index values into 
addresses of different lengths; by using a,ddress-length-determining hard-
ware already provided for other reasons, this instruction performs a task 
that would be rather painful t'o program. For other tasks, such as pro- 
gram relocation, exception-condition fix-up, and supervisory contro1 of 
input-output, hardware was considered, but programming techniques 
were selected as more economicsl. 

Power instead of Simplicity 

The user was given power rather than simplicity whenever an equal- 
cost choice had to be made. I t  was recognized in the first place that 
the new computer would have many highly sophisti~at~ed and experienced 
users. I t  would have been presumptuous as well as unwise for the com- 
puter designers to "protect" such users from equipment complexities that 
might be useful for solving complex problems. In the second place, the 
choice is asymmetric. Powerful features can be ignored by a user who 
wishes to confine himself to simple techniques. But if powerful features 
were not provided, the skillful and motivat#ed user could not wring their 
power from the computer. 

For these reasons, the user is given programmed access to the hardware 
l Names of actual 7030 operations are printed in S M A L L C A P S  in this book. When 

a name is used to denote a class of operations of which this operation is a member, it 
is printed in italics;also italicized are operations that exist in some computers but not 
in this one. For example, operations of the add type built into the 7030 include ADD, 

ADD TO MEMORY,  ADD TO M A C N I T U D E ,  etc., but not add absolute, which is provided in a 
different manner by modifier bits. 



wherever possible. He is given, for example, an interruption and address- 
protection system whose use can be simple or very complex. He is given 
an indexing system that can be used simply or in some rather complex 
ways. If he chooses and if his problems are simple, he can write pro- 
grams using floating-point arithmetic without regard for precision, over- 
flow, or underflow; but if he needs to concern himself with these often 
complex matters, he is given fu11 facilities for doing so. 

Generalixed Features 

Wherever specific programming problems were considered worthy of 
hardware, ad hoc solutions were avoided and general solutions sought. 
This principle came from a strong faith that important variants of the 
same problem would surely arise and that generality and flexibility would 
amply repay any extra cost. There was also certainty that the architects 
could hardly imagine, much less predict, the many unexpected uses for 
general operations and facilities. This principle, for example, explains 
the absence of special operations to edit output: the problem is solved 
by the general and powerful logical-connective operations. Similarly, a 
single uniform interruption technique is used for input-output communi- 
cation, malfunction warning, program-fault indication, and routine detec- 
tion of expected but rare exceptional conditions. 

Specialized Equipment for Frequent Taslcs 

There is also an antithetical principle. For tasks of great frequency 
in important applications, specialized equipment and operations are pro-
vided in addition to general techniques. This, of course, accounts for 
the provision of floating-point arithmetic and automatic index modifi- 
cation of addresses. 

To maximize instruction density, however, specialized operations of 
less than the highest frequency are specified by extra instructions for 
such operations rather than by extra bits in al1 instructions. In short, 
the information price of specifying a less usual operation is paid when i t  
is used rather than al1 the time. For example, indirect addressing, 
multiple indexing, and instruction-cqunter storing on branching each 
require half-word instructions when they are used, but no bits in the 
basic instructions are used for such purposes. As a result of such detailed 
optimization, the 7030 executes a typical scientific program with about 
20 per cent fewer instructions of 32 bits than does the 704 with 36-bit 
instructions on a corresponding program. 

Systematic Instruction Set 

Because the machine would be memory-limited, it was important to 
provide a very rich instruction set so that the memory accesses for an 



instruction and its operand would accomplish as much as possible. As i t  
has developed, the instruction set contains several thousand distinguish- 
able operations. Such a wealth of function could be made conceptually 
manageable only by strong systematization. For example, there is only 
one conditional branch instruction for testing the machine indicators, but 
this is accompanied by a 6-bit code to select any one of the 64 machine 
indicators, a bit to specify testing for either the on or the o$ condition, 
and another bit to permit resetting of the indicator. Thus there are only 
a few baeic operations and a few modifiers. In all, the number of oper- 
ations and modifiers is less than half the number of operations in the 
IBM 709 (or 7090), although the number of different instruction actions 
is over five times that of the 709. 

Such systematization, of course, implies symmetry in the operation 
code set-each modifier can be validly used with al1 the operations for 
which it can be indicated in the in~truct~iori, and, for most operations, the 
logica1 converses or counterparts are also provided. Thus the floating- 
point-arithmetic set includes not only the customary DIVIDE where the 
addressed operand constitutes the divisor, but also a RECIPROCAL DIVIDE 

which addresses the dividend. 

Provision for New Operating Techniques 

Experience with the IBM 650 and 704 computers had demonstrated 
that two computers whose speeds differ by more than one order of magni- 
tude are different in kind as well as in degree. This confirmed the sus- 
picion that the 7030 would be more than a super-704 and would be 
operated in a different way. An early effort was made, therefore, to 
anticipate some of the operating techniques appropriate for such an 
instrument, so that suitable hardware could be provided. 

The most significant conclusion from these investigations was that an 
important operating technique would be multiprogramming, or time-
sharing of the centra1 computer among several independent problem 
programs. This now familiar (but yet unexploited) concept was new in 
1956 and viewed midely with suspicion. 

A second conclusion was that the proposed high-capacity, high-data- 
rate disk storage would contribute substantially to system performance 
and would permit the 7030 to be operated as a scientific computer with- 
out very-high-speed magnetic tapes. 

2.4. Contemporary Trends in Computer Architecture 

Over the years computer designs have gone through a constant and 
gradua1 evolution shaped largely by experience gained in many active 
computing centers. This experience has heavily influenced the architec- 
ture of Stretch. In several instances the attack on a problem exposed 



by experience with existing computers differs in Stretch from the solution 
presently adopted in most computer installations. For example, with 
existing large computers the only way to meet the high cost of human 
intervention is to minimize such intervention; in the Stretch design the 
attempt has been, instead, to make human intervention much cheaper. 

The effect of severa1 of these contemporary design trends on the Stretch 
architect,ure will be examined here. 

Concurrency 

Most new computer designs achieve higher performance by oper-
ating various parts of the computer system concurrently. Concurrent 
operation of input-output and the central computer has been available 
for some years, but some contemporary designs go considerably beyond 
this and allo^ various elements of the central computer to operate 
concurrently. l 

A distinction may be made (see Chap. 13) between local concurrency, 
providing overlapped execution of instructions that are immediate neigh- 
bors in the instruction stream of a single program, and nonlocal con- 
currency, where the overlap is between nonadjacent instructions that 
may belong to different programs. The usual input-output concurrency 
is of the nonlocal tppe; since the instructions undergoing simultaneous 
execution are not closely related to one another, the need for interlocks 
and safeguards is not severe and may, to a large extent, be accomplished 
by supervisory programming. 

Local concurrency is used extensively in the central processing unit of 
the 7030 to achieve a high rate of instruction flow within a single instruc- 
tion sequence. Unlike another chem me,^ in which each specialized unit 
performs its task and returns its result to memory to await call by the 
next unit, the 7030 uses registers; this is because memory speed is the 
main limitation on 7030 computer speed. Severa1 of these registers form 
a high-speed virtual memory (the loolc-ahead unit of Chap. 151, which 
receives instructions and operands from the rea1 memory in advance of 
execution by the arithmetic unit and receives the results for storing while 
the arithmetic unit proceeds with the next operation. Up to eleven sue- 
cessive instructions may be in the registers of the central processing unit 
a t  various stages of execution: undergoing address modification, awaiting 
access to operands in memory, waiting for and being executed by the 
arithmetic units, or waiting for a result to be returned to memory. 

Considerable effort was expended on automatic interlocks and safe- 
guards, so that the programmer would not have to concern himself with 
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the intricate logic of local concurrency. The programmer writes his pro- 
gram as if it were to be executed sequentially, one instruction a t  a time. 

To make a computer with automatic program-interruption facilities 
behave this way was not an easy matter, because the number of instruc- 
tions in various stages of processing when an interrupting signal occurs 
may be large. The signal may have been the result of one of these 
instructions, requiring interruption before the next instruction is exe- 
cuted. Since the next several instructions may already be under way, 
it must be possible to go back and cancel their effects. The amount of 
overlap varies dynamically and may even be different for two executions 
of t8he identica1 instruction sequence; so it would be almost impossible 
for the programmer to do the backtracking. Therefore, the elaborate 
safeguards provided to ensure sequential results from nonsequential oper- 
ation do more than satisfy a desire to simplify programming; the pro- 
grammer would be lost without them. 

Time-sharing (as of a computer by multiprogramming) and concur- 
rency are two sides of one coin: to overcome imbalance in a computer 
system, faster elements are time-shared and slower elements are made to 
operate concurrently. In the 7030, for example, the single centra1 conl- 
puter uses several concurrently operating memory boxes, and the single 
computer-memory system may contro1 in turn many concurrently oper- 
stting input -outpiit devices. 

Even though per-operation cost tends to decrease as system perform- 
ance increases, per-second cost increases, m d  it, therefore becomes more 
important to avoid delaying t he calculator for input-output . To 
take fu11 advantage of concurrent input-output operation for a computer 
of very high performance demands that input data for one program be 
entered while a preceding program is in contro1 of calculation and that 
output take place after calciilatioii is complete. For this reason alone, 
it was apparent from the beginning that multiprogramming facilities 
would be needed for Project Stretch. 

A second motivation for multiprogramming is the need for a closer man- 
machine relationship. As computers have hecome faster, the increasing 
cost of wasted seconds has dictated increasing separation between the 
problem sponsor and the solution process. This has reduced the over-al1 
efficiency of the problem-solving process; for, in fact, the more complex 
problems solved on faster calculators are harder, not easier, for the spon- 
sor to comprehend and therefore need more, not less, dynamic intersction 
between solution process and sponsor. There can be no doubt that much 
computer time and more printer time has been wasted because the prob- 
lem sponsor cannot ohserve and react as his program ia being run on large 



computers like the IBM 704. This difficulty promised t o  become more 
acute with the even more complex problems for which Stretch was needed. 

With multiprogramming it becomes economically practical for a person 
seated a t  a console to observe his program during execution and interrupt 
it while considering the next step. Since the computer can immediateiy 
be switched to another waiting program, the user is not charged with the 
cost of an idle computer. Thus the extension of multiprogramming to 
manual operation offers, once the technique has been mastered, a tre- 
mendous economic breakthrough: it provides a genera1 technique for 
solving the problem of loss of contact between sponsor and solution. A 
sponsor can now interact with his problem a t  his own speed, paying only 
the cost of delaying the problem, not that of delaying the machine. This 
should materially accelerate that large proportion of scientific compu- 
tation which is expended on continua1 and perpetua1 refinement and 
debugging of mathematical models and the programs that embody them. 
The solution of most such problems is characterized more closely by a 
fixed number of interactions between computer and sponsor than by a 
fixed amount of computer time. 

Multiprogramming also makes it economically practical to enter new 
data and to print or display results on iine, that is, via directly connected 
input and output devices; whereas the economics of previous computers 
forced card-to-tape and tape-to-printer conversion o$ line, that is, with 
physically separate devices, so that only the fastest possible medium, 
magnetic tape, would be used on the computer. On-line operation of 
input and output is emphasized in the Stretch philosophy, because it 
removes much of the routine operator interventi011 and reduces the over- 
al1 elapsed time for each run of a problem. 

Multiprogramming makes severa1 demands upon system organization. 
Most obvious is the requirement of ample and fast storage, both interna1 
and external. Of equa1 importance is an adequate and flexible inter- 
ruption system. Also, in the rea1 world, time-sharing of a computer 
among users with ordinary human failings requires memory protection, 
so that each user can feel secure within his assigned share of the machine. 
Debugging is difficult enough a t  best, and most users would sacrifice 
efficiency rather than tolerate difficulties caused by the errors in other 
programs. It proved possible in the 7030 to provide a rudimentary but 
sufficient form of memory protection without affecting speed and with a 
modest amount of hardware. 

The equipment for multiprogramming was, however, limited to two 
essential features: program interruption and address monitoring, and 
these were designed to be as flexible as possible. Other multiprogramming 
functions are left to the supervisory program, partly because that arrange- 
ment appeared to be efficient, but primarily because no one could be sure 



which further facilities would prove useful and which would prove merely 
expensive and overly rigid inconveniences. Severa1 years of actual multi- 
programming experience will undoubtedly demonstrate the value of other 
built-in features. 

If multiprogramming is to be an operating technique, a radically differ- 
ent design is needed for the operator's console. If several independent 
programs are to be run, each with active operator intervention, there 
must be provision for multiple independent consoles. Each console must 
be incapable of altering any program other than the associated problem 
program. For active intervention by the problem sponsor (rather than 
by a special machine operator), the console miist be especially convenient 
to use. Finally, if a supervisory program is to exercise complete contro1 
in scheduling programs automatically, it must be able to ignore unused 
console facilities. Although intelligent hiiman intervention is prized 
highly, routine human intervention is to be minimized, so as to reduce 
delays and opportunities for error. 

The operating console was designed to be simply another input-output 
device wit'h a convenient assortment of switches, keys, lights, digital dis- 
plays, and a typewriter. A console interpretive program assigns mean- 
ing to the bits generated by each switch and displayed by each light, 
There are no maintenance facilities on tJhe operator's console, and com- 
pletely separate maintenance consoles are provided. 

Automtztic Programming 


Undoubtedly the most important change in computer application tech- 
nique in the past several years has been the appearance of symbolic 
assemblers and problem-langiiage compilers. Stiidies sho\ved that for 
Stretch a t  least half of al1 computer time would be used hy compiler- 
produced programs; al1 programs would be a t  least initially translated 
by ai1 assemlrder. 

A most important inlplication of symbolic-langiiage programming is 
that the addressing radix and structure need not be determined for coder 
convenience. Fairly complex instruction formnts c m  he iised without 
causing coding crrors, and operation sets with hundrcds of diverse oper- 
ations can be used effectively. 

Many proposals for amending system architectiire to simplify com- 
pilers were considered. The most far-reaching of these concerned the 
number of index registers, mhich should be infinity or unity for greatest 
ease of assignment during compilation. The alternatives were investi- 
gated in considerable detail, and both t~irned out to reduce computer 
performance rather sharply. Indeed, reduced performance was implied 
by most such proposals. These studies resulted in a belief which is not 
shared by al1 who construct compilers; this is that total cost to the user is 



minimized not by restricting system power to keep compilers simple but 
by enhancing facilities for the task of compilation itself, so that com- 
pilers can operate more rapidly and efficiently. 

Injorrnation Processing 

The arithmetic power of a computer is often only ancillary to its power 
of assembling, rearranging, testing, and otherwise manipulating infor- 
mation. To an increasing extent, bits in even a scientific computer 
represent t,hings other than numerica1 quantities: elements of a pro-
gram metalanguage, alphabetic material, representations of graphs, bits 
scanned from a pattern, etc. In the light of this trend, it was therefore 
important to match powerful arithmetical with powerful manipulative 
facilities. These are provided in the variable-field-length arithmetic 
and, in unique form, in the variable-field-length connective operations, 
which operate upon bits as entities rather than components of numbers. 
Good variable-field-length facilities are, of course, particularly important 
for business and military data processing. 

2.5.Hindsight 

As the actual shape of the 7030 began to emerge from the initial 
planning and design stages, it became apparent that some of the earlier 
thoughts had to be revised. (Some of these changes have already been 
noted parenthetically in Chap. 1.) The bus unit for linking and schedul- 
ing traffic between many memory boxes and many memory-using units 
turned out to be a key part of the design. The origina1 algorithms for 
multiplication and division proved inadequate with available circuits, 
and new approaches were devised. I t  became clear that division, especi- 
ally, could not be improved by the same factor as multiplication. Seria1 
(variable-field-length) operation turned out to be considerably slower 
than expected; so seria1 multiplication and division were abandoned, and 
the variable-field-length multiplication and division operations were rede- 
signed to use t'he faster parallel unit. 

The two separate computer sections that were postulated originally 
were later combined (see Chap. l),and both sets of facilities were placed 
under the contro1 of one instruction counter. Although the concept of 
multiple computing units, closely coupled into one system, was not found 
practical for the 7030 system, this concept still seems pr0mising.l In  
fact, the input-output exchange coupled to the main computer in the 
7030 is a simplified example, since the exchange is really another com- 
puter, albeit a highly specialized one with an ext,remely limited instruc- 
tion vocabulary. 

A. L. Leiner, W. A. Nota, J. L. Smith, and A. Weinberger, PILOT: A Kew Multi-
ple Computer System, J. ACM, vol. 6, no. 3, pp. 313-335, July, 1959. 



Some architectural features proved unworkable. Rather late in the 
design period, for example, it became clear that the met'hod of handling 
zero quantities in floating-point arithmetic was ill-conceived; so this 
method was abandoned, and a better concept was devised. 

Two excellent features, each of which contributes markedly to system 
performance, were found to have inherently conflicting requirements; 
their interaction prevents either feature from realizing its fu11 potential. 
The program-interrupt system is intended to permit unpredicted changes 
in instruction sequencing. The instruction look-ahead unit, on the other 
hand, depends for its effectiveness on the predictability of instruction 
sequences; each interruption drains the look-ahead and takes time to 
recover. This destroyed the usefulness of the interrupt system for fre- 
quent one-instruction fix-ups and required the addition of built-in excep- 
tion handling in such cases as floating-point underflow. 

On the other hand, some improvements became possible as the design 
progressed. It turned out, for example, that the equipment for perform- 
ing variable-field-length binary multiplication with the parallel arithmetic 
unit could easily be made to do binary-decima1 and format conversions; 
so this facility was added. 

There are in the 7030 architectural features whose usefulness is still 
unmeasured. A few are probably mistakes. Others seem to be innova- 
tions that will find redefinition and refinement in future computers, large 
and small. Still other features appear now to be wise for very-high- 
performance computers, but must be considerably scaled down for more 
modest machines. Experience has, however, reinforced the system archi- 
tects' belief in the guiding principles of the design and in the genera1 
applicability of these principles to other computer-planning projects. 



Chapter 3 

SYSTEM SUMMARY OF IBM 7030 

by W. Buchholz 

The IBM 7030 is composed of a central processing unit, one or more 
memory units, a memory bus unit, an input-output exchange, and input- 
output devices. Optionally, high-speed magnetic disk storage units and 
a disk control unit may be added for external storage. A typical system 
configuration is shown in Fig. 3.1. 

Information moves between the input-output devices and the memo- 
r i e ~under control of the exchange. The central processing unit (CPU) 
actually consists of several units that may operate concurrently: an 
instruction unit, which controls the fetching and indexing of instructions 
and executes the instructions concerned with indexing arithmetic ;a look- 
ahead unit, which controls fetching and storing of data for several instruc- 
tions ahead of the one being executed, so as to minimize memory traffic 
delays; a parallel arithmetic unit, for performing binary arithmetic on 
floating-point numbers a t  very high speed; and a seria1 arithmetic unit, 
for performing binary and decima1 arithmetic, alphanumeric operations, 
and logical-connective operations on fields of varying lengths. 

Logically the CPU operates as one coordinated unit upon a succession 
of instructions under the control of a single instruction counter. Care is 
taken in the design so that the user need not concern himself with the 
intricacies of overlapped operations within the CPU. 

The memory bus unit coordinates al1 traffic between the various 
memory units on the one side and, on the other side, the exchange, the 
disk control, and the various parts of the CPU. 

3.2. Memory Units 
The main magnetic core memory units have a read-write cycle time of 

2.1 microseconds. A memory word consists of 64 information bits and 
8 check bits for automatic single-error correction and double-error 
detection. 

17 
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The address part of every instruction provides for addressing directly 
any of 262,144 (2'7 word locations. Addresses are numbered from O 
up to the amount of memory provided in a particular system, but 
addresses O to 31 refer to index words and special registers instead of 
general-purpose memory locations. 

Each unit of memory consists of 16,384 @l4)words. A system may 
contain one, tmo, or a multiple of two such units, up to a maximum of 
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FIG.3.1. 7030 system. 

sixteen units. Each memory unit operates independently. In systems 
with two units or more, severa1 memory references may be in process 
a t  the same time. In order to take better advantage of this simultaneity, 
successive addresses are distributed anlong different boxes. When a sys- 
tem comprises two units, successive addresses alternate between the two. 
When a system comprises four or more unite, the units are arranged in 
groups of four, and successive addresses rotate to each of the four units 
in one group, except for the last group mhich may consist of only two 
units with alternating addresses. 



3.3. Index Memory  

A separate fast magnetic core memory is used for index registers. 
Since index words are normally read out much more often than they are 
altered, this memory has a short, nondestructive read cycle of 0.6 psec. 
The longer clear-and-write cycle of 1.2 psec is taken only when needed. 

The index nemory is directly associated tvith the instruction rinit of 
the computer. It cannot be used to furnish instructions, nor can it be 
used directly with input or output. 

The sixteen index registers have regular addresses 16 to 31, which 
correspond to abbreviated 4-bit index addresses O to 15. The first 
register cannot participate in automatic address modification since an 
index address of O is used to indicate no indexing. 

3.4. Special Registers 

Many of the registers of the machine are directly addressable. Some 
of these are composed of transistor flip-flops; others are in the fast index 
memory or in main memory. The addressable registers are assigned 
addresses O t'o 15. These locations cannot be used for instructions or for 
input or output data. 

Address O always contains zero. I t  is a bottomless pit; regardless of 
what is put in, nothing comes out. The program may at)tempt to store 
data a t  address 0, but any word fetched from there %-il1 contain only O 
data bits.l 

The remaining fifteen addresses correspond to machine registers, time 
clocks, and contro1 bits. They are listed in the Appendix. 

3.5. Input and Output  Facilities 

Input to the system passes from the input devices to memory through 
the exchange. The exchange assembles successive 64-bit words from the 
flow of input information and stores the assembled words in successive 
memory loeations without tying up the centra1 processing unit. The 
CPC specifies only the number of input words to be read and their loca- 
tion in memory; the exchange then completes the operation by itself. 

The exchange operates in a similar manner for output, fetching suc- 
cessive memory words and disassembling them for the output devices 
independently of the CPL. External storage devices, such as tapes and 
disks, are operated via the exchaiige as if they were iiiput and output. 

The exchange has the basic capability of operating eight independent 
input-output units. This eight-channel exchange can be enlarged by 

A distinctive type (0, 1)is used in the text for the bits of binary numbers or codes, 
and regular type (0, 1, 2, . . .) for decimal digits. For example, 10 is a binary 
number (two)and 10 a decimal number (ten). 
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adding more eight-channel groups. Each of these channels can handle 
inf~rmat~ion The exchange as a a t  a rate of over 500,000 bit s per second. 
whole can reach a peak data rate of 6 million information bits per second. 

A wide variety of input-output units can be operated by the exchange. 
These include card readers and punches, printers, magnetic tapes, oper- 
ator's consoles, and typewrit'er inquiry stations. Severa1 of some kinds 
of units can be attached to a single exchange channel; of the severa1 units 
on a single channel, only one can be operated a t  a time. 

Provisions have been made in the design of the exchange for adding up 
to 64 more channels operat'ing simultaneously but a t  a much lower data 
rate per channel. This extension is intended for tying the computer eco- 
nomically into a large network of low-speed units, such as manually 
operated inquiry stations. 

3.6. High-speed Disk Units 
For many large problems, the amount of core storage that it is practical 

to provide is not nearly large enough t'o hold al1 the data needed during 
computation. Earlier systems have been severely limited by the rela- 
tively low data rates of magnetic tapes or the relatively low capacities of 
magnetic drums available for back-up storage. To avoid having the 
over-al1 T030 performance limited by the same devices, it was essential 
to develop an external storage medium with high capacity and high data- 
transfer rates. A magnetic disk storage unit was designed for this 
purpose. 

The disk units read or write a t  a rate of 125,000 words per second, or 
8 million bits per second over a single channel (a rate 90 times that of the 
IBM 727 tape available with the 704). One or more units, each with a 
capacity of 2 million words, may be attached. *4ccess to any location of 
any disk unit requires of the order of 150 milliseconds. Once data trans- 
mission has started it continues a t  top speed for as many consecutive 
words as desired, without further delays for access to successive tracks. 

The control unit, or disk synchronixer, functions like the input-output 
exchange except that it is a single-channel device designed specifically to 
handle the high data rate of the disks. The exchange and the disk syn- 
chronizer can operate independently and simultaneously a t  fu11 speed. 
An error-correcting code is used on the disks, and any single errors in data 
read from the disks are corrected automatically by the control unit before 
transfer to memory. 

The centra1 processing unit performs arithmetical and logica1 oper- 
ations upon operands taken from memory. The results are generally 
left in ac~umulat~or registers to be further operated on or to be stored in 



memory subsequently. Operations are specified one a t  a time by instruc- 
tions, which are also taken from memory. Each instruction usually 
specifies an operation and an operand or result. The operand specifi- 
cation is made up of an address and an indez address. Part of the index 
word contents are added to the address in the instruction to obtain an 
eflectiue address. The effective address designates the actual location of 
the operand or result. The additions needed to derive the effective 
address and to modify index words are performed in an index-arithmetic 
unit which is separate from the main arithmetic unit. 

3.8. fnstruction Controls 

An instruction may be one word or one half word in length. Full-
and half-length instructions can be intermixed without regard to word 
boundaries in memory. 

Instructions are taken in succession under control of an instruction 
counter. The sequence of instructions may be altered by branching oper- 
ations, which can be made to depend on a wide variety of conditions. 
Automatic interruption of the norma1 sequence can also be caused by 
many conditions. The conditions for interruption and control of branch- 
ing are represented by bits in an indicator register. The interrupt sys- 
tem also includes a mask register for controlling interruption and an  
interrupt address register for selecting the desired set of alternate pro- 
grams. When it is needed, the address of the input or output unit 
causing an interruption can be read from a channel address register which 
can be set up only by the exchange. 

The interpretation and execution of instructions is monitored to make 
sure that the effective addresses are within boundaries defined by two 
boundary registers. 

3.9. lndex-arithmetic Unit 

The index-arithmetic unit, which is part of the instruction-contro1 unit, 
contains registers for holding the instructions to be modified and the index 
words used in the modification. When index words themselves are oper- 
ated on, some of these registers also hold the operand data. The index- 
ing operations include loading, storing, adding, and comparing. The 
index-arithmetic unit has gates for selecting the necessary fields in index 
and instruction words and a 24-bit algebraic adder. 

3.1O. Instruction Look-ahead 

After initiating a reference to memory for a data word, the instruction 
unit passes the modified instruction on to the look-ahead unit. This unit 
holds the relevant parts of the instruction unti1 the data arrive, so that 



both the operation and its operand can be sent to the arithmetic unit 
together. Since access to the desired memory unit takes a relatively long 
time, the look-ahead will accept several instructions a t  a time and 
initiate their memory references, so as to smooth out the memory traffic 
and obtain a high degree of overlap between memory units. Thus 
the unit " l o ~ k s ) ~  the instruction several instructions ahead of being 
executed 2nd anticipates the memory references needed. This reduces 
delays and keeps the arithmetic unit in as nearly continuous operation 
as possible. 

Indexing and branching instructions are completed by the instruction 
unit without involving the main arithmetic unit. The instruction unit 
receives its own operands, whereas the look-ahead receives operands for 
the main arithmetic unit. The look-ahead, however, is responsible for 
storing al1 results for both units, so that permanent modification of stored 
information is done in the proper logical sequence. Interlocks in the 
look-ahead unit ensure that nothing is altered permanently unti1 al1 pre- 
ceding instructions have been executed successfully. 

3.1 I.Arithmetic Unit 
The arithmetic unit consists of a parallel and a seria1 section. The 

parallel section essentially performs floating-point arithmetic a t  high 
speed, and the seria1 section performs fixed-point arithmetic and logical 
operations on fields of variable length. Both sections share the same 
basic registers and much of tJhe contro1 equipment; so they may be treated 
as one unit. 

For simplicity, the arithmetic unit may be considered to be composed 
of 4 one-word registers and a short register. This conceptual ~t~ructure is 
shown in Fig. 3.2, where the full-length registers are labeled A, B, C, and 
D, and the short register is labeled S. The registers marked A and B 
constitute the left and right halves of the accumulator. The registers 
marked C and D serve only as temporary-storage registers, receiving 
words from memory and (in seria1 operations only) assernbling results to 
be stored in memory. The short register S stores the accumulator sign 
bit and certain other indicative bits. 

In floating-point addition the operand from memory is sent to register 
C. (Since floating-point operands will fit into register C, register D is not 
needed here.) This operand is then added to the contents of register A 
or of both registers A and B, depending on whether single- or double- 
length addition has been specified. The result is placed in A or in A 
and B. As an alternative (adding to memory), the result may be 
returned to the location of the memory operand instead. 

In floating-point multiplication one factor is the number in accumu- 
lator register A. The other factor comes from memory and is trans- 
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FIG.3.2. Simplified register structure of arithmetic unit. 

ferred to register C. The factors are now multiplied together, and the 
product is returned to the accumulator register, replacing the previous 
contents. In  cumulative multiplication one factor must have been previ- 
ously loaded into a separate factor register (not shown). The other fac- 
tor again comes from memory and goes to C. The factors are multiplied 
as in ordinary multiplication, but the product is added to the contents of 
the accumulator register. 

In  floating-point division the dividend is in the accumulator, and the 
divisor is brought from memory to register C. The quotient is returnèd 
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to the accumulator, and the remainder, if any, goes to a remainder register 
(not shown). 

In seria1 variable-field-length operations the operand field rnay occupy 
parts of two adjacent memory words, and both words if necessary are 
fetched and placed in registers C and D. The other operand field comes 
from A and B. The operands are selected a few bits at  a time and 
processed in serial fashion. The result field rnay replace A and B, or it, 
rnay replace selected bits of C and D whose contents are then returned to 
memory. Binary multiplication and division operands are stepped into 
the parallel mechanism a few bits at  a time, but the actusl operation is 
performed in parallel. 

Other registers are the transit register, a full-word location, which rnay 
be used for automatic subroutine entry; and two 7-bit registers, the all- 
ones counter and the left-xeros counter, which are used in connective oper- 
ations to hold bit counts developed from the results. 

Al1 registers mentioned above, except memory registers C and D, are 
also addressable as explicit operands. 

3.1 2. Instruction Set 
The operations available rnay be divided into these categories: 

Data arithmetic 
1. Floating-point arithmetic 
2. Variable-field-length arithmetic 

Radix conversion 
Connectives 
Index arithmetic 
Branching 
Transmission 
Input-Output 

The categories are briefly described in the next few sections. 

3.1 3. Data Arithmetic 
The arithmetical instruction set includes the conventional operations 

LOAD, ADD, STORE, MULTIPLY, and DIVIDE. Modifier bits are available to 
change the operand sign. The operations subtract and add absolute are 
obtained by use of sign modifiers to the ADD instruction and are not pro- 
vided as separate operations. The same modifiers make it possible to 
change the sign of a number that is to be loaded, stored, multiplied, or 
divided. 

A convenient feature of the MULTIPLY operation is that one of the fac- 
tors is taken from the accumulator rather than from a separate register, 
and this factor rnay be the result of previous computation. Similarly, 



DIVIDE places the quotient in the accumulator, and so the quotient is 
available directly for further arithmetical steps. 

Extensions of the basic set of arithmetical operations permit adding 
and counting in memory, rounding, cumulative multiplication, compari- 
son, and further variations of the standard ADD operation. 

One of these variations is called ADD TO MAGNITUDE. This operation 
differs from ADD in that, when the signs and modifiers are set for sub- 
traction, it does not allow the result sign to change. When the result 
sign would change, the result is set instead to zero. This operation is 
useful in dealing with nonnegative numbers or in computing with dis- 
continuous rates. 

The important arithmetical operations are available in the floating- 
point mode as well as in the (fixed-point) variable-field-length mode. 

Floating-point-arithmetic Operations 

Floating-point (FLP) arithmetic uses a 64-bit floating-point word con- 
sisting of a signed 48-bit binary fraction, a signed 10-bit binary exponent, 
and an exponent flag to indicate numbers that have exceeded the avail- 
able exponent range. Arithmetic can be performed in either normalized 
or unnormalized form. 

The 48-bit fraction (mantissa) is longer than those available in earlier 
computers, so t'hat many problems can be computed in single precision, 
which would previously have required much slower double precision. 
When multiple-precision computation is required, however, it is greatly 
facilitated by operations that produce double-length results. 

To aid in significance studies, a noisy mode is provided in which the 
low-order bits of results are modified. Running the same problem twice, 
first in the norma1 mode and then in the noisy mode, gives an estimate 
of the significance of the results. 

Variabie-JieEd-length-arithmeticOperations 

The class of variable-field-length (VFL) arithmetic is used for data 
arithmetic on other than the specialized floating-point numbers. The 
emphasis here is on versatility and on economy of storage. Arithmetic 
may be performed directly in either decima1 or binary radix. Individua1 
numbers, or jìelds, may be of any length, from 1 to 64 bits. Fields of 
different lengths may be assigned to adjacent locations in memory, even 
if this means that a field lies partly in one memory word and partly in 
the next. Each field may be addressed directly by specifying its position 
and length in the instruction; the computer takes care of selecting the 
memory words required and altering only the desired information. 

Numerica1 data may be signed or unsigned. For unsigned data the 
sign is simply omitted in memory; this saves space and avoids the task of 



26 SYSTEM OF IBM 7030SUMMARY 

assigning signs where there are none to begin with. Unsigned numbers 
are treated arithmetically as if they were positive. 

VFL arithmetic is sometimes called integer arithmetic, because in multi- 
plication and division the results are normally aligned as if the operands 
were integers. I t  is possible, though, to specify that operands be oflset 
so as to obtain any desired alignment of the radix point. An offset can 
be specified in every instruction, arid there is no need for separate instruc- 
tions to shift the contents of the accumulator. 

A significant feature of the VFL DIVIDE operation is that it will pro- 
duce meaningful results regardless of the magnitude of the dividend or 
the divisor (provided these fa11 within the bounds of numbers generally 
acceptable to the arithmetic unit). The only and obvious exception is a 
zero divisor. This greater freedom eliminates much of the scaling previ- 
ously required before a DIVIDE instruction could be accepted. 

Al1 VFL-arithmetic operations are available in either decimal or binary 
form, and the choice can be n~ade  by setting 1 modifier bit. Decima1 
m~lt~iplicationand division, however, are not built into the computer 
directly; instead their operation codes are used to cause an automatic 
entry to a standard subroutine which can take advantage of high-speed 
radix conversion and binary multiplication or division. Thus decimal 
multiplication and division are faster but just as convenient to program 
as if they had been built in for execution by the seria1 decimal circuits. 

An operati011 is provided that causes an automatic entry to a sub-
routine. A field of this instruction may be used to distinguish up to 
128 pseudo operations. 

One use of the VFL-arithmetic operations is to perform genera1 arith- 
metic on portions of floating-point words, instruction words, or index 
words. The floating-point and index-arithmetic instruction classes do 
contain special addition and comparison instructions for the most fre- 
quent operations on partial words of this kind, but the VFL operations 
provide a complete set for al1 purposes. 

Alphabetic and alphanumeric fields of various lengths are handled by 
VFL-arithmetic operations as if they were unsigned binary numbers, 
regardless of the character code. There is actually no fixed character 
code built into the computer, although a certain code with many desira- 
ble features is recommended. Alphanumeric high-low comparisons are 
made by a simple binary subtraction of tmo fields. The only require- 
ment is that the binary numbers representing each character fa11 into the 
comparing sequence desired for the application. If the code used for 
input or output does iiot conform to this comparing requirement, special 
provisions facilitate the translating of the code to any other form by 
programming a table look-up. 

The number of bits used to encode individua1 characters may be varied. 
Thus a decimal digit may be compactly representec! by a biilary code of 



4 bits, or it may be expanded to 6 or more bits when intermixed with 
alphabetic information. 

A group of radix-conversion operations is provided to convert integers 
between decima1 and binary form in either direction. These operations 
are also used in implementing the decima1 Kultiplication and division 
pseudo operations mentioned in the preceding section. 

3.1 5. Connective operations 

Instructions that combine bits by logical and, or, and exclusive or func- 
tions have been available in earlier computers. These and many other 
nonarithmetical data-handling operations are here replaced in simple and 
orderly fashion by connective operations that provide many logical facili- 
ties not previously available. These operations are called COXKECT, 

COXXECT TO MEMORY, and COXSECT FOR TEST. 

Each connective operation specifies a memory field of any length from 
1 to 64 bits, as in integer arithmetic. Each bit in the memory field is 
logically combined with a corresponding bit in the accumulator; the 
resulting bit replaces the accumulator bit in COXXECT, the memory bit in 
CONXECT TO MEMORY, FOR Al1 three oper- or neither in COR'SECT TEST. 

ations make available certain tests and count's of O and 1 bits. 
There are sixteen possible ways in which to combine, or connect, two 

bits. Each of these logical connectives can be specified along with each 
of the three connective operations. Besides the connectives and, or, and 
exclusive or, there are connectives to match bits, to replace bits, and to 
set bits to O or l .  Either or both of the operands may be inverted. 

Although the term logical connectives suggests evaluation of elaborate 
expressions in Boolean algebra, the connective instructions have impor- 
tant everyday applications, such as the assembling and converting of 
input-output data. Their power lies in their ability to specify fields of 
any length and in any position in memory, either single test bits or strings 
of adjacent bits. 

3.16. Index-arithmetic Operations 

The address part of any instruction may be modified by adding a num- 
ber in a specified index register before the address is used. Normally both 
the instruction and the index register remain unchanged. To alter the 
index registers is the function of the index arithmetic operations. 

These operations include loading, storing, incrementing, and comparing 
of index values. The index value is a signed number, and additions are 
algebraic. One of the instructions allom-s up to sixteen index values to be 
added together for use in further indexing. Another indexing instruction 
provides the function of indirect addressing. 
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Each index word contains a count to keep track of the number of times 
a program loop has been traversed. Counting rnay be coupled with 
incrementing of the index value. A third field in each index word 
specifies a reJill address from which another index word rnay be loaded 
automatically. 

Instructions generally specify one of a set of fifteen index registers for 
address rnodification, but the number of available registers nlay be readily 
supplemented by other index locations in memory through the operation 
RENAME. This operation identifies one designated index register with 
one of these memory locations and does the bookkeeping necessary to 
cause this memory location to refiect changes in the index register. 

Although indexing instructions are provided to change index values 
and counts explicitly, it is possible to use another mode, called progressive 
indexing, in which the index quantities rnay be advanced each time they 
are used. 

3.1 7. Branching Operations 

The branching operations either conditionally or unconditionally alter 
the instruction counter so as to change the course of a program. The 
number of these operations is not large, but modifiers are available to 
provide a great dea1 of flexibility. 

Al1 machine-state indicators, such as sign, overflow, error, and input- 
output conditions, are collected in one 64-bit indicator register. The 
BRANCH ON INDICATOR instruction rnay specify any one of these 64 indi-
cators as the condition to be tested. -4 modifier specifies whether branch- 
ing is to occur when the indicator is on or o$. Another modifier rnay 
cause the indicator tested to be reset. 

A second operation, BRANCH ON BIT, permits the testing of a single bit 
anywhere in memory with one instruction. The tested bit rnay also be 
modified. This instruction places a virtually unlimited number of indi- 
cators under the direct contro1 of the program. 

A hybrid operation combines advancing of an index word with testing i 

and branching. Thus the most common program loops rnay be closed 
with one half-length instruction, although fu11 indexing flexibility requires 
two half-length instructions to specify the necessary quantities. 

Branch instructions rnay be coupled with another operation to store 
the instruction-counter contents a t  any desired location before branching. 
This simplifies reentry to a program from a subprogram. 

3.18. Transmission Operations 

The operation TRANSMIT provides the facilities to move a block of data 
from one memory area to another. A second operation, SWAP, inter-
changes the contents of two memory areas. 



There are basically two operations for controlling input-output and 
external storage units: READ and WRITE. Each instruction specifies the 
unit desired and a memory area for the data to be read or written. 

The memory area is specified by giving the address of a control word 
which contains the first data address In memory and a count of the num- 
ber of words to be transferred. The contro1 word also contains a refi11 
address which can specify the address of another contro1 word. Control 
words can thus be chained together to define memory areas that are not 
adjacent. 

Control words have the same format as index words and can be used 
for indexing. This important feature means that the same word can be 
used first for reading new data, then for indexing while those data are 
being processed, and finally for writing the data from the same memory 
area. 

Various modifications of READ and WRITE are provided to fit different 
circumstances. Other instructions perform various control functions. 

Al1 instructions for operating external units are issued by the computer 
program but are executed independently of the program. Severa1 data 
transfers can thus take place simultaneously, al1 sharing access to 
memory. Signaling functions inform the program when each external 
process is completed. 

Al1 external units, regardless of their characteristics, are controlled by 
the same set of instruct'ions. They are distinguished only by a number 
assigned to each unit. 

3.20. N e w  Features 

New programming features not identified with specific instructions are 
summarized in this section. 

Addressing 

In instructions where this is meaningful, the position of a single bit in 
any word of memory can be addressed directly. A complete word-and- 
bit address forms a 24-bit number. The word address (18 bits) is on the 
left and the bit address (6 bits) on the right of that number. For the 
purpose of bit addressing, the entire memory may be regarded as a set 
of consecutively numbered bits. Since the number of bits in a memory 
word (64) is a power of 2 and al1 addressing is binary, the address of the 
rightmost bit (bit 63) of one memory word is followed immediately by the 
address of the leftmost bit (bit O )  of the word with the next higher word 
address. Memory-word boundaries may be ignored by the program. 

Other instructions use only fu11 memory words as data, and these pro- 
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vide space for only 18 bits of address. The bit address is assumed to be O. 
Still other instructions refer to half words and use 19 bits of address. The 
extra bit is immediately to the right of the word address, and the remain- 
ing 5 bits of the bit address are treated as 0s. 

Index words provide space for a sign and 24 bits in the value field, 
so that al1 addresses may be fully indexed to the bit level. The entire 
24-bit instruction address, with 0s inserted where instructions have fewer 
address bit#s, participates in the algebraic addition during address modi- 
fication. When less than 24 bits are needed in the effective address, the 
low-order bits are dropped. 

Many interna1 machine registers are directly addressable as if they 
were memory. The accumulator may, for example, be added to itself; 
this is accomplishcd by addressing the accumulator as the operand of an 
ADD instruction. One importaiit use of this facility is in preserving and 
restoring the contents of interna1 registers by transmitting them as a 
block to or from memory with one TRAXSMIT instruction. 

Instead of selecting a location from which to fetch data, the address 
itself may serve as data in many operations. I t  is then called an immedi-  
ate address. Such data are limited to a t  most 24 bits. This feature is 
very convenient for defining short constants wit hout having to provide 
the space and time for separate access to memory. Immediate address- 
ing is not available for sending data to memory, because the address 
space is needed to select memory. 

The term direct address is used to distinguish the usual type of address 
which gives the location of an operand or of ari instruction. 

The term indirect address refers to an address that gives the location of 
another address. An indirect address may select ali immediate address, 
a direct address, or yet another indirect address. Iiidirect addresses are 
obtained in the 7030 by the instruction LOAD VALUE EFFECTIVE, which 
places the effective address found a t  the specified memory location into 
ai1 indes register for indexing a subseqiient instruction. Multiple- 
level indirect addressing is obtained whcn LOAD V A L ~ E  EFFECTIVE finds 
a t  the selected location another iiistruction LOAD VALUE EFFECTIVE which 
causes the indirect addressing process to be repeated. 

Program Interruption 

A single program-interrupt system serves for responding to asynchro- 
nously occurring external signals and for monitoring exceptional condi- 
tions generated by the program itself. When one of the indicators in the 
previously mentioned indicator register comes on, the comput'er selects 
an instruction from a corresponding position in a table of fix-up instruc- 
tions. This instruction is sandwiched into the program currently being 
executed a t  whatever time the interruption occurs. The extra instruc- 



tion is usually one which first stores the current instruction-counter set- 
ting, to preserve the point at  which the current program was interrupted, 
and then branches to the desired fix-up routine. The table of fix-up 
instructions rnay be placed anywhere in memory. 

Means are provided to select which indicators rnay cause interruption 
and when interruption will be permitted. Priorities can thus be estab- 
lished. If more than one interrupt condition should occur a t  a time, the 
system will take them in order. Special provisions are made to permit 
interruptions to any leve1 to occur without causing program confusion. 

Address Monitoring 

Address-monitoring facilities are provided to assist in the debugging of 
new programs and to protect already debugged programs against errone- 
ous use of their memory locations by other programs being run simulta- 
neously in multiprogrammed fashion. The two address-boundary registers 
are used to define the desired memory area. One register specifies the 
lower boundary and one the upper boundary. Al1 effective operand 
addresses and al1 instruction addresses are compared against the two 
addresses in the registers to see whether the address in question falls 
inside or outside the boundaries. By setting a contro1 bit, it is possible 
to define either the area inside the boundaries or the area outside the 
boundaries as the protected area. Whichever it is, any attempt to fetch 
an instruction or data word from the protected area or to store new infor- 
mation in the protected area rnay be suppressed, and the program rnay 
be interrupted immediately. Thus it is possible to use the address- 
monitoring system to make sure either that a given program does not 
stray outside its assigned area or that no program will interfere with 
whatever is stored inside the area. 

The built-in monitoring system is much more effective than the alterna- 
tive of screening each program in advance to make sure that al1 addresses 
are proper. I t  is very difficult to predict by inspection al1 the eflective 
addresses that rnay be generated during execution by indexing, indirect 
addressing, or other procedures, especially in a program that rnay contain 
errors. 

Clocks 

An interval timer is built in to measure elapsed time over relatively 
short intervals. It can be set to any value a t  any time, and an indicator 
shows when t'he time period has ended. This indicator will cause auto- 
matic program interruption. 

To provide a continuous indication of time, a t ime clock is also fur- 
nished. This clock runs continuously while the machine is in operation; 
its setting cannot be altered by the programmer. I t  rnay be used to time 



longer int'ervals for logging purposes or, in conjunction mith an external 
calibrating signal, to provide a time-of-day indication. 

3.21. Performance 

Since high performance is so important an objective of the 7030, a sum- 
mary of the system should give some examples of its internal speed. Such 
speeds cannot be quoted with any accuracy, however. 

In earlier computers it has been a relatively simple matter to compile 
a list of exact times or time formulas for the execution of each operation. 
To determine the time taken to execute a program it was necessary only 
to add the times required for each instruction of the program. Describ-
ing the internal speed of the 7030 with any accuracy is a much more diffi- 
cult task because of the high degree of overlap among the independently 
and asynchronously operating parts of the centra1 processing unit. 

A few raw arithmetic speeds are listed in Chap. 14. The list is not 
complete and includes only t,he time spent by the arithmetic unit oper- 
ating on data already available. There would be little point in extend- 
ing the list; instruction and data fetlches, address modification, and the 
execution of indexing and branching instructions al1 overlap the arith- 
metic-execution times to varying degrees; so the figures could not be 
meaningfully added together. 

Rules of thumb and approximation formulas may be developed in time, 
but their accuracy would depend considerably on the type of program. 
The degree of overlap varies widely between problems requiring a pre- 
dominante of floating-point arithmetic or variable-field-length arit'hmetic 
or branching or input-output activity. A zero-order approximation, 
which could be off by a factor of 2 or more, might be to count 2.5 micro-
seconds for each instruction writ'ten. To arrive a t  a more accurate figure 
i t  is necessary to take into account the complex timing relationships of a 
succession of specific instructions in considerable detail. Even then i t  
would be difficult to measure the effect on performance of the long float- 
ing-point word, the large core memory, the very large capacity of the 
high-speed disk units, the overlapped input-output data transfer, or the 
interrupt system. The best approach is still to program a complete 
problem and then time the actual execution on the 7030 itself. 



Chapter 4 

NATURAL DATA UNITS 
by G. A. Blaauw, F. P. Brooks, Jr., and W. Buchholz 

4.1. Lengths and Structures of Natural Data Units 

In  considering automatic data-processing tasks generally, we identify 
five common types of operations: floating-point operations, fixed-point 
arithmetic, address arithmetic, logica1 manipulations, and editing oper- 
ations. Each of these has a natural data unit distinct from those of the 
other types in length, variability of length, or internal structure. An 
idea1 computer would permit each operation to address its natural data 
unit directly, and this addressing would be simplified by utilizing al1 
properties of the natural data unit that are constant. 

It should be observed that the natural data unit is associated with an 
individua1 manipulative operation, not with a whole program. In any 
program there will be different kinds of operations and, therefore, differ- 
ent natural data units. Furthermore, the same datum is generally the 
object of different kinds of operations. For example, a floating-point 
datum may be developed as a unit in a computation, its components 
then used in radix-conversion arithmetic, and the characters of the result 
finally used as units in editing for printing. The format of a datum is 
usually made to agree as closely as possible with the natural data unit 
of the operations most often performed on that datum. 

The natural data unit for most technical computation has come to be 
the floating-point nurnber, because the use of jioating-point arithmetic 
frees the mathematician from many details of magnitude analysis. This 
unit has considerable internal structure: the representation of a single 

Note: Sections 4.1 and 4.2 of this chapter are taken from a previously published 
paper by the same authors: Processing Data in Bits and Pieces, I R E  Trans. on Elec-
tronic Computers, vol. EC-8, no. 2, pp. 118-124, June, 1959; also "Information Process- 
ing," UNESCO (Paris), R. Oldenbourg (Munich), and Butterworths (London), 1960, 
pp. 375-382. 
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number includes a number sign, a fraction, an exponent, an exponent 
sign, and bit's for flagging numbers (Fig. 4.1). The fraction part of this 
unit might be made to vary widely in length, depending upon precision 
requirements, but the precision analysis that such variation would imply 
would often be as burdensome as the detailed magnit'ude analysis that 
floating-point operation eliminates. Moreover, these operations must 
proceed with the utmost speed, and a fixed format facilitates parallel 
arithmetic. For t,hese reasons, floating-point numbers follow a rigid for- 

J Word boundary 

3 flag bits 

FIG.4.1. Data unit for floating-point arithmetic. 

mat. The datum is usually long-in this machine it uses 64 bits, with 
the fraction occupying 48 of these. 

Fixed-point arithmetic is used on problem data when magiiitude analy- 
sis is trivial, such as that encountered in business or st,at,istical calcu- 
1at.ions. Figure 4.2 shows some examples. Kumbers may or may not 
be signed. If the arithmetic is binary, the data unit has a simple struc- 

Word boundary 
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binary binary decimaiI I 1 1 i 


FIG.4.2. Data units for fixed-point arithmetic. 

ture. If the arithmetic is decimal, the number has an inner structure 
of digits individually encoded in binary form. Whether the unit is simple 
or complex in structure, its natural length is quite variable, with typical 
numbers varyiiig from 4 to 40 bits in length. 

Address arithmetic operates upon a natural data unit whose structure is 
similar to that of unsigned fixed-point data, whether decimal or binary 
(Fig. 4.3). The unit has, however, one or a few standard lengths because 
of the fixed size of memory, and the length of the unit is relatively short. 

Pure logical man,ipulations-whether used as the main part of a pro-





manipulations, such as comparison or transmission, the natural data unit 
is a field of many characters or a complete record. 

Besides these five kinds of natural data units that can be identified for 
operations commonly built into computers, other natural data units are 
suitable for operations usually encoded with subroutines, such as matrix 
arithmetic, complex arithmetic, and multiple-precision arithmetic. As 
these larger unita are necessarily composed of components that themselves 
are the data units of some built-in operation, they rieed not be considered 
separately. 

JWord boundary 
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FIG.4.5. Data units for editing operations. 

4.2. Procedures for Specifying Natural Data Units 

The previous section has shown how natura1 data units for different 
operations differ in structure, length, and variability of length. These 
diversities imply t hat more informat ion is required for the specification 
of the natural data units than would be required if they were alike. The 
computer designer can choose the manner in which the user will pay this 
information price, but the price must be paid. 

The data and instriictions for any given problem may be considered 
to consist of a single stream of natura1 data units, without computer- 
prescribed spacers, groupings, etc. The computer designer must furnish 
a memory structure and an addressing system with which the individua1 
components of a stream of natural data units are to be manipulated. 
The programmer nlust map the data-unit stream of his problem into a 
spaced and grouped stream suitable for the memory organization that 
the computer designer provides. This mapping requires some of the 
computer's power and necessarily introduces some inefficiencies. The 
more complex and difficult the mapping, the lower is the performance of 
the whole system. 

The classica1 approach to this problem was to ignore it. For sim- 
plicity, early computer designers assumed (1 )  that provisions for han- 
dling the objec t data of fixed-point-arithmetic operations would suffice 
and (2) that the natural data unit for these operations was the single 
number of constant length. These two assumptions led to a simple, 



homogeneous, fixed-word-length memory organization. Since neither 
assumption was completely true, the information price of diversity was 
paid by the user in reduced performance and more complex programming. 

When performing operations other than fixed-point arithmetic, such as 
editing and address arithmetic, the programmer shifted, extracted, and 
packed in order to get at the natural data unit of the operation. When 
faced with data of varyirig lengths, the prograamer had twa uptions as 
to the method of paying the information price. He could (1) place each 
unit in a different machine word or (2) pack several shorter units into a 
single word. (Since the machine word was usually picked to be a reason- 
able upper bound on natural data lengths, he was less often faced with 
the problem of manipulating units that required several words.) The 
price of using a different word for each data unit is reduced memory 
capacity and increased operating times for input-output and arithmetic 
units. The price of packing memory cells is paid in memory capacity 
for the packing instructions, in execution time, and in programrning time. 

Clearly, one way to improve the performance of a computer by chang- 
ing its organization is to pay the price of diverse data units in the form 
of more complex hardware. This implies a memory structure that can 
be composed of variable-length cells. Severa1 computers have been so 
organized. These computers have been intended primarily for business 
data processing, where editing operations are of great importance and 
where the assumption of constant-length data units is particularly poor. 
As the importance of nonarithmetical operations in al1 kinds of calcu- 
lations became more apparent, a variable-cell-length memory organiza- 
tion became more desirable for any high-performance general-purpose 
computer. 

There are several methods of achieving variable ce11 size. If the 
memory is to be addressed rather than scanned, the ce11 lengths may 
vary from ce11 to ce11 and from problem to problem, but the positions 
(and therefore the lengths) of cells must remain constant within a single 
computation. That is, cells at  different addresses may have different 
lengths, but a change in the contents of a ce11 must not change its length. 
On tape, where scanning is used instead of addressing, this constraint 
does not hold, and some computers allow item lengths on tape to vary 
by deleting either leading numerica1 zeros or trailing alphabetie blanks. 

A simple way of organizing a memory of different ce11 sizes is to pro- 
vide a fixed complem'ent of assorted sizes; this is done, for example, in the 
IBM 604 calculator. This rather inflexible arrangement was discarded 
for the IBM 7030 in favor of a second method, where the smallest data 
component is made addressable; a celì is defined by specifying both the 
position of one component in memory and the extent of the cell, Because 
of the requirements of pure logica1 operations and of editing operations, 



addressing resolution was provided al1 t,he way down to the individua1 
bit level. Each bit in the memory has a uiiique address. 

There are several techniques for specifying ce11 extent. The first is to 
use a unique con~bination of data bits as a partition between cells. This 
method is used to separate numerica1 fields in the IBAI 705. The use of 
partition symbols implies reduced memory capacity due to the symbols 
themselves and, more seriously, exclusion of the partition-bit combination 
from the set of permissible data symbols. This dificulty alone would 
have precluded use of partitions between memory cellsIin the 7030. 
Arbitrary bit combinations arise in assembling instructions, reading data 
from external devices, and performing binary computations, and such 
activities could not be excluded. Furthermore, in any comput,er where 
memory speed is the limitiiig factor on performance, it is highly desirable 
that each bit fetchedfrom memory contain 1 bit of information. Use of 
extra symbols and restrictions on bit combinations both reduce iiifor- 
mation content. 

A variation of the partition-bit approach is to provide space for 
marker bits outside the data storage space. Iii the snlaller IBM 1401 
computer, for example, the ce11 size is variable to the character level, aiid 
the high-order end of a ce11 is indicated by a separate bit available in 
each character position. This is a simple technique to implement, aiid 
it avoids restrictions oli the data symbols permissible. The obvious infor- 
mation price of this scheme is 1 extra bit per character. An additional 
price must be paid in instructions to set up and alter the positions of 
these marks, which, being extraterritorial in nature, are awkward to 
bring in from the inpirt. Moreover, t,his approach becomes relatively 
more costly as data storage space increases in comparison to program 
storage space. 

h third method of specifying ce11 ext,eiit is to use a Procrustean-bed 
technique in which data are transferred from memory to a register unti1 
the register is full. Transfers to memory likewise proeeed unti1 the 
register is completely copied. This technique is used for alphabetic 
fields in the 705. The disadvantage is that the techiiique requires extra 

- 
Pro.crusttes (~rij-kriis'tSz) n CL fr Gr Prokroustes 
f r  prokrouein to beat out i o  streirh, ir. &-o forward $1 
kiouein to ctrike l Gr ~ k t i q  A celebrateci legendary 
highmauman of ~ h c a  &ho tied his victims upon a n  iron 
bed and as  the case iequired either stretched or cut off 
theh le& to adapt them to itk lennth. Hence the bed 
o f  Procrus[es or Procrustean bed, an idea: theow, or 
systern (o whlch facts, human nature, or the Iike, would be 
arbi t r~r i ly  fitted. 
(By permission from Webster's " N e w  Inlernational 
Dietionary," 2d ed., copyright 1959 by G.  & C .  Merr iam 
Company ,  Springfield, Mass.,  publishers of  the Mer- 

instructions for changing the 
leiigt,li of the receiviiig register 
or the use of several receiving 
registers of diff erent lengths. 

A fourt'h t'echnique, and 
that adopted, is to provide 
the inforrnat,ion on ce11 extent 
in the iii~t~ructions that use 
that cell. This can be done 



by specifying one of severa1 masks, by specifying beginning and end, or 
by specifying beginning and length. In  order to simplify indexing, the 
last method was selected. Each instruction that can refer to variable- 
length cells contains t,he complete address of the leftmost (high-order) bit 
of the ce11 and the length of the cell; however, instructions that do not 
need to refer to cells of varying length do not contain al1 this information. 

4.3. Data Hierarchies 

Most data-processing tasks involve a hierarchy of data units which, 
in ascending order of size, are frequently called character, jìeld, record, 
and $le. Each structxral unit coiisist,~ of one or more of the preceding 
units. The reason for the existence of this structure is that an associ- 
ation of meaningful data units may have a meaning of its own. To use 
a well-worn example, a payroll record consists of an employee identifica- 
tion number and related data, such as name, pay rat'e, and amounts, each 
of which is a field which, in turn, is made up of alphabetic or numerica1 
characters. This record as a whole may be sorted into identification 
number sequence with other employees' records, if the fields remain 
associated with the identification; if the fields were al1 sorted individually, 
their meaning would be destroyed. Again, a file of last week's payroll 
records can be distinguished from a file of this week's records if they 
remain together. 

I t  has been found useful to define a similar hierarchical structure for 
the machines that process the data, but often for different reasons. The 
number of bits transmitted in parallel a t  one time between the computer 
and input-output units is one such data unit; that transmitted in parallel 
between computer and memory is another, often different. Efficient 
operation of input-output units usually requires the definition of still 
larger groupings of data. 

The distinction between the natura1 requirements of the data and those 
or" the machine has often been obscured by the fact, already referred to, 
that the user may be forced to adapt his data to the characteristics of the 
maehine. Thus the same terms are frequently used for both purposes. 
We prefer to use two sets of terms and to point out similarities by listing, 
side by side, terms that have a corresponding ranking: 

Natura1 data hierarchy Machine data hierarchy 

Bit Bit 
Character Byte 
Field MTord 
Record Block 
File Ree1 of tape, tray of cards, 

web of paper, etc. 



Bit is widely used in both contexts and, since it causes no confusion, 
the term will be retained for both. 

Character is usually identified with a graphic symbol, such as a numeri-
cal digit, alphabetic letter, punctuation mark, or mathematical symbol. 

Fieid denotes a group of characters processed together in a single 
numerica1 or logica1 operation. Examples are a number, a name, an 
address. A field is identified by its location in storage or in a record. 
(The term goes back to punched-card usage. Item has also been used.) 

A record is a group of fields that are processed together. Correspond-
ing fields in successive records normally occupy the same relative position 
within the record. A record is identified by one or more identifier fields 
or by its location in storage or in a file. 

A $le is a group of records, which are usually processed one record at a 
time. A file rnay be identified by an identifier record. 

The actual usage of the above terms depends largely on the application, 
and many applications require additional steps in the hierarchy which 
rnay not have generic names. 

Terms used here to describe the struct'ure imposed by the machine 
design, in addition to bit, are listed below. 

Byte denotes a group of bits used to encode a character, or the number 
of bits transmitted in parallel to and from input-output units. A term 
other than character is used here because a given character rnay be repre- 
sented in different applications by more than one code, and different codes 
rnay use diff erent numbers of bits (i.e., different byte sizes). In  input- 
output transmission the grouping of bits rnay be completely arbitrary 
and have no relation to actual characters. (The term is coined from bite, 
but respelled to avoid accidental mutation to bit.) 

A word consists of the number of data bits transmitted in parallel from 
or to memory in one memory cycle. Word size is thus defined as a 
structural property of the memory. (The term catena was coined for 
this purpose by the designers of the Bull GASIAIA 60 computer.) 

Block refers to the number of words transmitted to or from an input- 
output unit in response to a single input-output instruction. Block size 
is a structural property of an input-output unit; it rnay have been fixed 
by the design or left to be varied by the program. 

4.4. Classes of Operations 

Severa1 classes of operations are provided in the 7030 to dea1 directly 
with different natura1 data units. In particular, the variable-field-length 
system to be described in Chap. 7 has been designed to overcome the 
limitgations of the rigid word structure of the memory and permit the 
program to specify fields of any length, up to the rather high limit of 



64 bits. This system is used for fixed-point-arithmetic, alphanumeric, 
and logica1 operations, since the data units for these classes of operations 
can be specified in the same way. 

The floating-point operations (see Chap. 8) dea1 specifically with 
floating-point numbers. As has been mentioned, it is advantageous here 
to make the length of the floating-point number the same as that of the 
memory word. 

Address arithmetic is performed primarily by indexing operations, 
which are discussed in Chap. 11, and these operations are designed to 
handle the various address lengths encountered in the 7030. 

Editing operations require a combination of these classes of operations 
and others, like data transmission, that are not so readily classified. 
Data transmission and input-output operations (see Chap. 12) have the 
restriction that only full64-bit words can be transmitted. Thus a record 
of a given natura1 length must be approximated by a block that is a 
multiple of 64 bits long. To save the few extra bits in the last word of a 
block would have greatly increased the amount of equipment and was not 
considered worth while. 



Chapter 5 

CHOOSING A NUMBER BASE 
by W. Buchholz 

Introduction 

One of the basic choices the designers of a digital conlputer must make 
is whether to represent numbers in decimal or binary form. Many fac- 
tors enter int,o this choice. IVhere high performance is a major goal, as 
in the IBM 7030, high arithmetical speed is of the essence and a proper 
choice of number system can contribute to arithmetical speed. But the 
over-al1 performance of a computer cannot be measured by its arith- 
metical speed alone; it is significantly affected by the ease with which 
nonarithmetical operat ions are performed. Equally important is the 
human factor. Cnless the computer is programmed to assist in the 
preparati011 of a problem and in the presentati011 of results, false starts 
and waiting time can greatly dilute the effective performance of a high- 
speed computer. Regardless of the number system chosen for interna1 
arithmetic, decimal numbers must be used in communicating between 
man and the computer. 

Civilized man settled on 10 as the preferred number base for his own 
arithmetic a long time ago. l The ten digits of the decimal system had 
their origin when man learned to count on his ten fingers. The word 
digit  is derived from the Latin word digitus for finger and remains to 
testify to the history of decimal numbers. Historically, severa1 other 
number bases have been employed by various peoples,at different times. 
The smaller number bases are clearly more awkward for humaii beings 

Note: The material in Chap. 5 is taken from VCT. Buchholz, Fingers or Fists? (The 
Choice of Decimai or Binary Representation), Communs. ACIW, vol. 2, no. 12, pp. 3-
I l ,  December, 1959. 

1 Although in most languages numbers are expressed by decimal symbols, i t  is a 
curious fact that there has been so far no standardization on multiples of 10 for units 
of money, length, weight, a.nd time. We are still content. to do much of our everyday 
arithmetic in what is really a mixed-radix system which includes sueh number bases 
as 3, 4, 7, 12, 24, 32, 60, 144, 1,760, etc. 
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to use because more symbols are needed to express a given number. 
Kevertheless, there is evidence of the use of the base 2, presumably by 
men who observed that they had two ears, eyes, feet, or fists. 

With the decimal symbolism in universal use, it was natura1 that 
the earliest automatic digiial computers, like the desk calculators and 
punched-card equipment that preceded them, should have been decimal. 
In 1946 John von Keumann and his colleagues a t  t'he 1nst)itat.e for 
Advanced Study, in their classica1 report describing the new concept of 
a stored-program computer, proposed to depart from that practice.l 
They chose t,he base 2 for their system of arithmetic because of its greater 
economy, simplicity, and speed. 

Many designers have followed this lead and built binary computers 
patterned after the machine then proposed. Others have disagreed and 
pointed out techniques for obtaining satisfactory speeds with decimal 
arithmetic without unduly increasing the over-al1 cost of the computer. 
Since decimal numbers are easier to use, the conclusion has been drawn 
that decimal computers are easier to use. There have been two schools 
of thought ever since, each supported by the fact that both decimal and 
binary computers have been eminently successful. 

As the Institute for Advanced Study report has long been out of print, 
it seems appropriate to quote at  some length the reasons then given for 
choosing binary arithmetic : 

In  spite of the longstanding tradition of building digital machines in the 
decimal system, we feel strongly in favor of the binary system for our device. 
Our fundamental unit of memory is naturally adapted to the binary system 
since we do not attempt to measure gradations of charge a t  a particular point in 
the Selectron [the memory device then proposed] but are content to distinguish 
turo states. The flip-flop again is truly a binary device. On magnetic wires or 
tapes and in acoustic delay line memories one is also content to recognize the 
presence or absence of a pulse or (if a carrier frequency is used) of a pulse train, 
or of the sign of a pulse. (We will not discuss here the ternary possibilities of a 
positive-or-negative-or-no pulse system and their relationship to questions of 
reliability and checking, nor the very interesting possibilities of carrier frequency 
modulation.) Hence if one contemplates using a decimal system . . . one is 
forced into a binary coding of the decimal system-each decimal digit being 
represented by a t  least a tetrad of binary digits. Thus an accuracy of ten deci- 
mal digits requires a t  least 40 binary digits. In a true binary representation of 
numbers, however, about 33 digits suffice to achieve a precision of 10lO. The 
use of the binary system is therefore somewhat more economica1 of equipment 
than is the decimal. 

A. W. Burks, H. H. Goldstine, and J. von Xeumann, "Preliminary Discussion of 
the Logica1 Design of an Electronic Computing Instrument," Institute for Advanced 
Study, Princeton, N.J., 1st ed. June, 1946, 2d ed., 1947, sec. 5.2; also subsequent 
reports by H. H. Goldstine and J. von Neumann. 



The main virtue of the binary system as against the decimal is, however, the 
greater simplicity and speed with which the elementary operations can be per- 
formed. To illustrate, consider multiplication by repeated addition. In binary 
multiplication the product of a particular digit of the multiplier by the multi- 
plicand is either the multiplicand or null according as the multiplier digit is 1 or O. 
In the decimal system, however, this product has ten possible values between 
null and nine times the multiplicand, inclusive. Of course, a decimal number has 
only logio 2 = 0.3 times as many digits as a binary number of the same accuracy, 
but even so multiplication in the decimal system is considerably longer than in 
the binary system. One can accelerate decimal multiplication by complicating 
the circuits, but this fact is irrelevant to the point just made since binary multi- 
plication can likewise be accelerated by adding to the equipment. Similar 
remarks may be made about the other operations. 

An additional point that deserves emphasis is this: An important part of the 
machine is not arithmetical but logica1 in nature. Xow logic, being a yes-no 
system, is fundan~entally binary. Therefore a binary arrangement of the 
arithmetical organs contributes very significantly towards producing a more 
homogeneous machine, which can be better integrated and is more efficient. 

The one disadvantage of the binary system from the human point of view is 
the conversion problem. Since, hoivever, it is completely known how to convert 
numbers from one base to another and since this conversion c m  be effected solely 
by the use of the usual arithmetic processes, there is no resson why the computer 
itself cannot carry out this conversion. I t  might be argued that this is a time- 
consuming operation. This, however, is not the case. . . . Indeed a general- 
purpose computer, used as a scientific research tool, is called upon to do a very 
great number of multiplications upon a relatively small amount of input data, 
and hence the time consumed in the decimal-to-binary conversion is only a trivial 
per cent of the total computing time. ,4 similar remark is applicable to the 
output data. 

The computer field and, along with it, the technical literature on com- 
p u t e r ~  have grown tremendously since this pioneering report appeared. 
It seems desirable, therefore, to bring these early comments iip to date 
in the light of experience. The present discussion is also intended to 
widen t'he scope of the examination so as to reflect knowledge gained from 
increasing areas of application of the large computers. Mathematical 
comput'ations are still important, but the processing of large files of busi-
ness data has since become a major field. Computers are beginning to 
be applied to t3he contro1 of planes in actual flight, to the collection and 
display of data on demand, and to language translation and systems 
simulation. Regardless of the application, a great dea1 of the time of 
any large computer is spent on preparing programs before they can be 
run on that computer. Much of this work is nonnumerica1 data process- 
ing. The point of view has thus shifted considerably since the dnys of 
the von Neumann report, and a reevaluation seems to be in order. 



5.2. Information Content 

Informati011 theory1v2 allows us to measure the information content of 
a number in a specific sense. Assume a set of N possible numbers, each 
of which is equally likely to occur during a computing process. The 
information H contained in the selection of a number is then 

Suppose, now, that a set of b binary digits (bits) represents a set of 2b con- 
secutive integers, extending from O to 2b - 1, each of these integers being 
equally probable. Then 

H = log, 2b 
= b bits 

(Because in this example the amount of information is equal to the num- 
ber of bits needed to represent the integer in binary form, the bit is often 
chosen as the unit of information. The two uses of the term bit should 
not be confused, however. h'umbers are defined independently of their 
representation, and the information content of a number is measured in 
bits regardless of whether the number is in binary, decimal, or any other 
form.) 

Similarly, assume a set of lod consecutive integers from O to lod - 1 
expressed by d decimal digits. Here 

H = log, lod 
d 

= d log2 10 = -
log10 2 

= 3.322d bits (approx.) 

Thus a decimal digit is approximately equivalent in information content 
to 3.322 binary digits. 

In  the actual representation of a number N, both b and d must, of 
course, be integers. The ranges lodand 2b cannot be compared exactly. 
For such pairs as d = 3 and b = 10, the values lo3 = 1,000 and 
21° = 1,024 come very dose to being equal. Here b/d  = 196 = 3.333 
(approx.), which agrees well with the above value 3.322. This shows, 
a t  least, that the measure of information is a plausible one. 

Conversely, to express a binary number requires approximately 3.322 
times as many binary symbols (O and l )  as decimal symbols (O to 9). 

1 C. E. Shannon and W. Weaver, "The Mathematical Theory of Communication," 
The University of Illinois Press, Urbana, Ill., 1949. 

L. Brillouin, "Science and Information Theory," Academic Press, Inc., Sew York, 
1956, pp. 3-4. 



Few truly decimal switching and storage devices have found application 
in high-speed electronic computers; otherwise a decimal computer might 
be a great dea1 more compact than a corresponding binary computer. 
Generally, only binary (or on-off) devices are used; hence decimal digits 
must be encoded in binary form even in decimal computers.l Since bits 
cannot be split to make up the 3.322 bits theoretically required, a t  least 
4 bits are needed to represent a decimal digit. Therefore, instead 
of being more compact, a decimal computer in fact requires a t  least, 
4/3.322 = 1.204 times as many storage and switching elements in a large 
portion of its system. The reciproca1 ratio, 3.322/4 or 83 per cent, might 
be considered to be the maximum storage efficiency of a decimal computer. 

Four-bit coding of decimal digits is called binary-coded decimal (BCD) 
notation. Codes with more than 4 bits for each decimal digit are often 
used to take advantage of certain self-checking and other properties; the 
efficiency of such codes is correspondingly lower than 83 per cent. 

The 83 per cent efficiency is only a theoretical value for even a 4-bit 
code. A basic assumption made in arriving a t  this value was that al1 the 
N possible numbers in the expression log2 N were equally likely to occur. 
Koniiniform distributions are quite frequent, however. A common situ- 
ation is that a set of b bits (in the binary case) is chosen to represent 
N integers from O to N - 1, N < 2" and the integers N to 2* - 1 are 
never encountered. The information content log2 N may then be con- 
siderably less than b bits. Both binary and decimal computers suffer a 
loss of efficiency when the number range N is not a power of the number 
base. 

For example, assume N = 150; that is, the numbers range from O to 
149. Then 

H = log2 150 = 7.23 bits 

Since 8 is the next largest integer, a binary computer requires a t  least 
8 bits to represent t,hese numbers, giving an efficiency of 7.23/8 or 90 per 

l The universal use of binary elements is based on practical engineering consider- 
ations, but under certain crude assumptions it can be shown that 2 is also a near- 
optimum radix theoretically. Let a given number A' be represented in radix r by n 
radix positions; that is, N = rn. Assume the cost of each radix position to  be 
proportional to the radix, so that the cost C of representing N is 

log, iv 
C = krn  = kr - 

log, r 

Assume further that r and n could be continuously variable; then setting dC/dr = O 
gives a minimum cost for r = e .  The nearest integra1 radixes are 2 and 3, and their 
value of C is not much greater than the minimum. Although ternary arithmetic is 
an interesting possibility, there has been little incentive to develop ternary devices 
in practice. 



cent. A decimal computer requires a t  least three decimal digits or 
12 bits, with an efficiency of 7.23/12 or 60 per cent. Relative to the 
binary number base, the efficiency of decimal representation is only 
60/90 or 67 per cent. 

The loss in efficiency is greatest for the smaller integers. With binary 
integers the lowest efficiency of 78 per cent occurs for N = 5. Decima1 
representat,ion has its lowest efficiency sf 25 per cent a t  M = 2. Decina1 
representation is never more efficient than binary representation, and 
only for N = 9 and ili = 10 are they equally efficient. 

Figure 5.1 shows the storage efficiency curves for binary and decimal 
systems, and Fig. 5.2 shows the efficiency of the decimal representation 
relative to the binary system. 

FIG.5.1. Absolute efficiency of decimal and binary number systems. E = (log2N ) / b ,  
where b is the least number of bits to represent N. 

For the above analysis a variable-field-length operation was assumed 
where the least possible number of bits or decimal digits can be assigned 
to represent the maximum value of ili. A great many computers are 
designed around a fixed word length, and even more space will then be 
wasted unless time is taken to program closer packing of data. It was 
also assumed that the N integers considered were distributed uniformly 
throughout the interval; a nonuniform distribution with numbers miss- 
ing throughout the interval resiilts in a further lowering of storage 
efficiency, which affects binary and decimal computers alike. 

Although only integers have been considered so far, the same reasoning 
obviously applies to fractions truncated to a given precision, since these 
are treated in storage in the same manner as integers. Similarly, the 
sign of a number may be regarded as an integer with AT = 2. Instruc-



tions are always made up of a number of short, independent pieces. For 
example, ai1 operation code for 45 different operations inay be encoded 
as a set of integers with N = 45, for which the binary efficiency is 92 per 
cent and the decimal efficiency only 69 per cent. 

The lower information-handling eficiency of the decimal representa- 
tion may reflect itself in higher cost, in lower performance, or both. If 
performance is to be maintained, the cost will go up, but it would be 
wrong to assume that the extra bitls required for decimal representation 
mean a proportional increase in cost. The rat'io of the cost of storage, 
registers, and associated switching circuits to the total cost of a com- 

FIG.5.2. Relat,ive efficiency of decimal and binary number systems. Er = b2/b10, 
where 62 (bio)  is the least number of bits in the binary (decimal) representation of N. 

putler depends greatly on the design. Factors other than hardware cost 
need to be considered in estimating the over-al1 cost of using a computer 
on a given job. 

When the cost is to be the same, a lower storage efficiency may result 
in lower performance. Thus the performance of many storage devices, 
such as magnetic tape, is limited by the bit transmission rate, so that 
the greater storage space occupied by decimal numbers, as compared to 
equivalent binary numbers, is reflected in a corresponding loss of speed. 
This may be important for applications in which the transmission rate to 
and from tape, or other external storage, is the limiting time factor: a 
binary computer is clearly a t  least 20 per cent faster than a correspond- 
ing decimal computer on a tape-limited job of processing numerica1 data. 

Similarly, in many other applications the rate of information (data and 
instruction) flow out of and into the interna1 memory will be a major 
limiting factor, particularly for a computer designed to achieve the high- 
est practicable performance with given types of components. Although 



it can be very misleading to compare two dissimilar computers on the 
basis of memory speed only, the comparison is appropriate for two com- 
p u t e r ~using similar components and organization but differing mainly in 
their number representation. 

A memory in active use may be looked on as an information channel 
with a capacity of 

C = nw bits per second 

where n is the number of bits in the memory word and W is the maximum 
number of words per second that the memory can handle. 

This channel capacity is fully utilized only if the words represent num- 
bers from O to 2" - 1, each of which is equally probable. If the infor- 
mation content is less than that, the actual performance is limited to Hw, 
where H is defined as before. More specifically, if a memory word is 
divided into k fields, of range N i ,  No, ATs, . . . , N k ,  then 

H = 2 logo N ,  

The maximum performance is lowered by the factor 

For k = 1,this is the same factor as the storage efficiency described above. 
Other organizational factors may reduce performance further, and 

memory multiplexing can be used to increase over-al1 performance. 
These matters are independent of the number representation. The fact 
remains that a decimal organization implies a decided lowering of the 
maximum performance available. By increasing the number of com-
ponents this loss can be overcome only in part, because of physical and 
cost limitations. 

In summary, to approach the highest theoretical performance inherent 
in a given complement of components of a given type, it is necessary to 
make each bit do 1 bit's worth of work. 

5.3.  Arithmetical Speed 
A binary arithmetic unit is inherently faster than a decimal unit of 

similar hardware complexity operating on numbers of equivalent length. 
Whereas the gain in speed of binary over decimal arithmetic may not be 
significant in relatively simple computers, it is substantial when the 
design is aimed a t  maximum speed with a given set of components. 
There are severa1 reasons why binary arithmetic is faster. 

1. The cumulative delay in successive switching stages of an adder 
places a limit on the attainable speed, and the more complex decimal 



adder requires more levels of switching than a binary adder for numbers 
of similar precision. Carry propagation, if any, also takes longer in a 
decimal adder because decimal numbers are longer. 

2. With a base of 2, certain measures can be taken to speed up multi- 
plication and division. An example is the skipping of successive 0s or I s 
in the multiplier. When corresponding measures are taken with base 10 
arithmetic, they are found to give a smaller ratio of impro~ement~. Thus 
the average number of additions or subtractions needed during multi- 
plication or division is greater, and this difference is compounded by the 
extra time needed for each addition or subtraction. 

3. Scaling of numbers, which is required to keep numbers within the 
bounds of the registers during computation, results in a greater round-off 
error when the base is 10. The finest step of adjustment is 3.3 times as 
coarse in shifting by powers of 10 as it is with powers of 2. In large 
problems the greater error will require more frequent use of multiple- 
precision arithmetic, a t  a substantial loss of speed. This effect is partly 
offset by the fact that scaling will occur more often in binary arithmetic, 
and the extra shifting takes more time. 

4. Multiplying or dividing by powers of the number base is accom- 
plished by the fast process of shifting. The coefficients 2 and >$ are 
found much more frequently in mathematical formulas t)han other coeffi- 
cients, including 10 and /.io,and a binary computer has the advantage 
here. 

To overcome the lower speed inherent in decimal arithmetic, it is, of 
course, possible to construct a more complex arithmetic unit a t  a greater 
cost in components. If top speed is desired, however, the designer of a 
binary arithmetic unit will have taken similar steps. There is a decided 
limit on this acceleration process. Not only does the bag of tricks run 
low after a while, but complexity eventually becomes self-defeating. 
Greater complexity means greater bulk, longer wires to connect the com- 
ponents, and more components to drive the longer wires. The longer 
wires and additional drivers both mean more delays in transmitting sig- 
nals, which cannot be overcome by adding even more components. 
When the limit is reached there remains the substantial speed differ- 
ential between binary and decimal arithmetic, as predicted by theoretical 
considerations in Sec. 5.1. 

5.4.Numerica1 Data 
Xumerical data entering or leaving a computer system are of two kinds: 

(l)those which must be interpreted by humans and (2) those which come 
from or actuate other machines. The first are naturally in decimal form. 
Tlie second class, which occurs when a computer is part of an automatic 
contro1 system, could also be decimal, since machines, unlike human 



beings, can readily be designed either way; but binary coding is generally 
simpler and more efficient. 

The previously cited von Xeumann report considered only the impor- 
tant applications where the volume of incoming and outgoing data is 
small compared with the volume of intermediate results produced dur- 
ing a computation. In a fast computer any conversion of input and out- 
put data may take a negligible time, whereas the format ef intermediate 
results has a major effect on the over-al1 speed. The von Neumann 
report did not consider the equally important data-processing applica- 
tions in which but few arithmetical steps are taken on large volumes of 
input-output data. If these data are expressed in a form different from 
that used in the arithmetic unit, the conversion time can be a major 
burden. Any conversion time must be taken into account as reducing 
the effective speed of the arithmetic unit. 

The choice would appear simple if different computers could be applied 
to different jobs, using decimal arithmetic when the data were predomi- 
nantly decimal and binary arithmetic elsewhere. Experience has shown, 
however, that a single large computer is often used on a great variety of 
jobs that cannot be classified al1 one way or the other. Moreover, as 
will be shown in subsequent sections, there are strong reasons for choos- 
ing a binary addressing system even where the applications indicate the 
use of decimal data arithmetic. Some kind of binary arithmetic unit 
must then be provided anyway, if only to manipulate addresses. 

A high-speed binary arithmetic unit is thus clearly desirable for al1 
applications. To handle decimal data, the designer may choose to pro- 
vide a separate decimal arithmetic unit in the same computer, or he may 
prefer to take advantage of the speed of his binary arithmetic unit by 
adding special instructions to facilitate binary-decima1 conversion. 

The decimal arithmetic and conversion facilities must take into account 
not only the different number base of decimal data but also the different 
format. Binary numbers usually consist of a simple string of numerica1 
bits and a sign bit. Decima1 numbers are frequently interspersed with 
alphabetic data, and extra zone bits (sometimes a separate digit) are then 
provided to distinguish decimal-digit codes from the codes for alphabetic 
and other characters. The separate treatment of numerical and zone por- 
tions of coded digits greatly adds to the difficulty of doing conversion by 
ordinary arithmetical instructions. Hence the decimal arithmetic and 
conversion instructions should be designed to process decimal data 
directly in a suitable alphanumeric code. 

5.5. Nonnumerical Data 

A computer may have to process a large variety of nonnumerical 
information : 



1. Character codes representing alphabetic, numerical, or other sym- 
bols for recording data in human-readable form 

2. Codes used to perform specified functions, such as terminating dat'a 
transmission 

3. Yes-no data ("married," "out of stock," etc.) 
4. Data for logica1 and decision operations 
5.  Instructioiis (other than numerical addresses) 
6. Machine-status information, such as error indications 
7. Status of switches and lights 

Becauae the storage and switching elements normally used in com- 
p u t e r ~are binary in nature, al1 information, numerical or nonnumerical, 
is encoded in a binary form. This binary coding has no direct relation 
to the number base being used for arithmetic. The number base deter- 
mines the rules of arithmetic, such as how carries are propagated in addi- 
tion, but it has no meaning in dealing with nonnumerical information. 
Thus the binary-decima1 distinction does not apply directly to the non- 
arithmetical parts of a computer, such as the input-output system. 

Even where mathematical computation on numerical data is the major 
job, a great dea1 of computer time is usually spent on nonnumerical oper- 
ations in preparing programs and reports. I t  is import'ant, therefore, 
that t'he designer avoid constraints on the coding of input and output 
data, such as are found in many existing decimal computers. Many of 
these constraints are unnecessary and place extra burdens of data con- 
version and editing a t  greater cost on peripheral equipment. 

5.6.Addresses 
Memory addresses are subject to counting and adding and are thus 

proper numbers mhich can be expressed with any number base. Base 10 
has the same advantage for addresses as for data: conversion is not 
required, and actual addresses can be contiiiuously displayed oli a con- 
sole in easily readable form. 

The compactness of binary numbers is found particularly advantageous 
in fitting addresses into the usually cramped instruction formats (see 
Chap. 9). Tight instruction formats c~ntr ibut~e to performance by reduc- 
ing the number of accesses to memory during the execution of a program 
as well as by making more memory space available for data. The low 
efficiency of decimal coding for addresses has already led designers of 
nominally decimal computers to introduce a certain amount of binary 
coding into their instruction formats. Such a compromise lends to pro- 
gramming complications, which can be avoided when the coding is purely 
binary. 

A1t)hough the compactness of the binary notation is important,, the 



most significant advantage of binary addressing is probably the ease of 
performing data transformation by address selection (table look-up). 
This is discussed in the next section. 

5.7. Transformation 

A single data-processing operation may be regarded as transforming 
one or more pieces of data into a result according to certain rules. The 
most genera1 way of specifying the rules of transformation is to use a 
set of tables. The common transformations, such as addition, multi- 
plication, and comparison, are mechanized inside the computer, and some 
others, such as code conversion, are often built into peripheral equipment; 
tables (sometimes called matrixes) may or may not be employed in the 
mechanization. Al1 transformations not built into the computer must be 
programmed. 

In  a computer with a large rapid-access interna1 memory, the best 
transformation procedure, and often the only practical one, is table 
look-up. Each piece of data to be transformed is converted to an address 
which is used to select an entry in a table stored in memory. (This 
method of table look-up is to be distinguished from table searching, where 
al1 entries are scanned sequentially unti1 a matching entry is found.) 
Table 5.1 serves to illustrate the process by a code-translation example. 

Two methods of encoding the digits O to 9, both in current me, are 
shown in Table 5.1. One is a 2-out-of-5 code which requires 5 bits for 
every digit. Two and only two l bits are contained in each digit code, 
with al1 other 5-bit combinations declared invalid. This property per- 
mit's checking for single errors and for common multiple errors. The 
second code is a 4-bit representation using codes 0001 to 1001 for the 
digits 1 to 9 and 1010 for the digit 0. Codes 0000 and 101 1 to l l11 
are not used. 

For translation from the 5-bit code to the 4-bit code, a table of 32 (25) 
entries is stored in successive memory locations. Each entry contains a 
4-bit code. Where the 5-bit combination is a valid code, the correspond- 
ing 4-bit code is shown. Al1 invalid 5-bit combinations are indicated in 
the example by an ent'ry of 1111, which is not a valid 4-bit code. 

The example in Table 5.1 consists in adding a given 5-bit code 10001 
to the address of t'he first entry, the table base address. The sum is the 
address in the table of the desired entry, which is seen to be 01 11. If 
the entry had been 1111, the incoming code would have been known to 
contain an error. 

The key to this transformation process is the conversion of data to 
addresses. A system capable of receiving, transforming, and transmit- 
ting any bit pattern can communicate readily with any other system, 
including equipment and codes over which the designer has no control. 



The desire to accept any bit pattern as an address almost dictates binary 
addressing. It is true that decimal addressing does not entirely preclude 
transformation of arbitrary data by indirect methods, but such methods 
are very wasteful of time or memory space. 

Code A Code 3 Address Entry 
(5 bits) (4 bits) 

O001 l O001 . . .100000 1111 
O01 O1 O010 . . .100001 I111 
O01 1 o O01 1 . . .l o001 0 1111 
o1 O01 o1 O0 . . .l O001 1 o001 
O1 o1 o 01 O1 . . .l O01 O0 1111 
O1 1 O0 O110 . . .l O01 O1 O010 
l O001 O1 l l . . . . . . 
1 O01 0 l O00 . . .101110 1111 
1 o1 o0 1 O01 . . .101111 1111 
1 1 O00 IO10 . . .l l O000 l111 

. . .l 1 O001 0111 

. . .110010 l O00 

. . .110011 11 11 
. . .  . . .  

. . .111111 1111 

Example: Tran,slation of Symbol "7" 

. . .l00000 Table base address 
+ 10001 Incoming 5-bit code 

(Sum) . . .l 10001 Address of table entry 

5.8. Partitioning of Memory 

I t  has already been mentioned that the binary radix makes it possible 
to scale numbers in smaller steps and thus reduce loss of significance dur- 
ing computation. Binary addresses also have this advantage of greater 
resolution. Shifting binary addresses to the left or right makes it easy 
to divide memory into different areas, or cells, whose sizes are adjustable 
by powers of 2. With decimal addressing such partitioning is easily 
obtained only by powers of 10. 

In  a core memory, for example, each address refers to a memory word 
consisting of the number of parallel bits that are accessible in a single 
memory cycle. Since binary addressing of these memory words had been 
chosen for reasons given in previous sections, there was tJhen considerable 
advantage to choosing the number of bits in each word to be a power of 2. 
In  the 7030 this word length was set at 2" or 64 bits. (This particular 
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power of 2 gave a good compromise between speed and cost of memory 
and provided ample space for representing a floating-point number in 
one memory word. Thirty-two bits was too short and 128 bits too long.) 
Individua1 bits in a 64-bit memory word can be addressed simply by 
extending the address and inserting 6 bits to the right of the word address 
to operate a bit-selection mechanism. When increments are added to 
these addresses in binary fosm, whether by explicit instructions or by 
indexing, carries from the sixth to the seventh bit automatically advance 
the word address. 

The flexibility of bit addressing may be illustrated by enlarging the 
example of Table 5.1. Instead of using an entire memory word to hold 
one 4-bit table entry, it is possible to use for the same entry a ce11 only 
4 bits long, with sixteen cells in each memory word of 64 bits. With 
respect to the bit address, the incoming code is shifted 2 bits to the left 
to obtain increments of 4 bits of storage in memory: 

. . .10000000 Table base address 
+ 1800100 Incoming 5-bit code with two 0s added 

(Sum) . . .l10001 00 Address of table entry 

Address Address of 

of word bit in word 


The example can be readily changed to translate from a 5-bit code to a 
12-bit code, such as is used on punched cards. Without an actual table 
being shown, it is evident that the 12-bit code can be conveniently stored 
in successive 16-bit cells. The proper addresses are then obtained by 
inserting four O bits a t  the right, instead of two as before: 

. . .1000000000 Table base address 
+ 100010000 Incoming 5-bit code with four 0s added 

(Sum) . . . l10001 0000 Address of table entry 

Address Address of 

of word bit in word 


Similarly, the process can be extended to finer divisions. By using the 
incoming code as the address of a single bit, it is possible to look up a 
compact table of yes-no bits in memory to indicate, for example, the 
single fact of whether the code is valid or not. 

Kow consider these examples in terms of decimal addressing. If single 
bits were to be addressed, the next higher address digits would address 
every tenth bit. This is too large a ce11 size to permit the addressing of 
every decimal digit in a data field. To be practical in large-scale numeri- 
cal computation, the code for a decimal digit cannot occupy a ce11 of more 
than 4, 5, or a t  most 6 bits. When the addressing is chosen to operate on 



cells of this size, direct addressing of single bits is ruled out. Table entries 
requiring more t,han one ce11 cannot occupy less than ten cells. 

The designer of a binary computer may or may not choose to endow it 
with the powerful facility of addressing single bits (bit addressing) and 
provide for automatic modification of bit addresses (bit indexing). The 
point remains t'hat the flexible partitioning of memory available to him 
would not have been available with decima1 addressing. 

A major task in any comput'er installation is the preparation and check- 
out of programs. Printing a portion of a program a t  the point where an 
error has been found is a common check-out t001 for the programmer. 
Interpreting such a print-out is greatly simplified if the instructions are 
printed in the language that the programmer used. 

At first glance this seems to be a convincing argument for decimal 
computers. On closer examination it becomes evident that both binary 
and decimal machines would be difficult to use wit,hout the assistance of 
adequate service programs. When good service programs are available 
to assist the user, it is hard to see how the number base in the arithmetic 
unit makes much difference during program check-out. 

One reason for service programs is that in practice much programming 
is done in symbolic notation, regardless of the number base used intler- 
nally. The programmer's language is then neither binary nor decimal; 
it is a set of alphanumeric mnemonic symbols. Conversion to or from 
the symbolic notation by means of a service program is desirable for any 
user of either kind of machine, with the possible exception of the pro- 
gramming specialist who writes programs in machine language either by 
choice or in order to develop new service programs. 

Another and more basic reason for service programs is that most, com- 
p u t e r ~have more than one format for data and instructions, and a service 
program is needed to help interpret these formats. In binary computers 
it is desirable to know whetlher a data field is an integer or a floating-point 
number with its separate exponent (integer) and fraction. The instruc- 
tions are normally divided different'ly from either kind of data field. A 
knowledge of the divisions of each format is required in converting from 
binary to decimal form. 

Many decimal computers do not use purely decimal coding for the 
instructions, particularly those aimed a t  efficient processing of large 
amounts of nonnumerical business data. Moreover, alphanumeric char- 
acter coding usually employs a convention different from tlhat used in the 
coding of instructions. Again, a service program is needed to interpret 
the different data and instruction languages. 

Table 5.2 illustrates this point with print-outs of actual computer pro- 



grams. The first example is for an IBM 704, which uses binary arith- 
metic. The service program lists memory locations and instructions in 
octal form with the appropriat'e instruction bits also interpreted as alpha- 
betic operation codes. The service program distinguishes floating-point 
numbers, which are listed in a decimal format with separate exponent, 
mantissa, and signs. 

Print-out from I B M  704 

Location Instruction or data 

F S B  O 3 0 2 0 0  O 
T Z E  O 1 0 0 0 0  O 
T P L  O 1 2 0 0 0  O 
S T 0  O 6 0 1 0 0  O 
H T R  O 0 0 0 0 0  O 
- 0 1  + 9 . 9 4 5  
+ o 3  + 4 . 1 3 0  
- 0 1  + 7 . 3 3 0  
+ o 5  + 5 . 3 0 1  

Print-out from I B M  P05 

Straight Print-out modijied 
Location print-out for instructions 

0 1 2 0 4  8 T L - l  8  1 3 3 0 1  1 0  
0 1 2 0 9  4 / & R 1  4 1 1 8 9 1  1 0  
0 1 2 1 4  L 1  0 9  4 L 1 0 9 4  
0 1 2 1 9  H W 5  R 4  H 1 6 5 9 4  0 2  
0 1 2 2 4  7  W 6  5 5  7  1 6 6 5 5  0 2  
0 1 2 2 9  1 2 4 4 9  1 2 4 4 9  

. . . . . . . . . 
1 1 3 0 4  I S  P A  I 1 2  7 A  1 4  
1 1 3 0 9  G E  M T A  G 3 5  6 A  1 3  
1 1 3 1 4  S P R O  S 3 7 9 0  1 0  
1 1 3 1 9  C E S S  E C 3 5 2 2 E  0 5  
1 1 3 2 4  D T H R  D 3 3 8 R  0 7  
1 1 3 2 9  O U G H  O 1 4 7 8  1 5  

The second illustration shows a print-out from the IBM 705, a com-
puter with decimal arithmetic and with alphanumeric coding for data. 
Each alphanumeric character has a unique 6-bit code. For reasons of 
storage efficiency, instructions in the 705 use a different code where some 
of the bits in a 6-bit character have independent meanings. I n  the exam- 
ple shown in Table 5.2, this dual representation is overcome by printing 
the program and data twice, once for ease of reading data and once for 



ease of interpreting instructions. A service program was needed to 
accomplish this. 

The objection might be raised tha,t the examples show up problems in 
existing machine organizations rather than a need for service programs. 
I t  is actually possible for "numerical engines" aimed a t  processing only 
numerical data to escape the problem of dual representation for instruc- 
tions and data. When 'lphanumeric data must also be processed in a 
reasonably efficient manner, however, one cannot avoid t,he problem of 
dual representation. 

5.10. Other Number Bases 
Only binary and decimal computers have been considered here. 

Although it is clear t,hat other number bases could be selected, they 
would al1 require translation to and from decimal formats, and they 
would be no more efficient than base 2. 

The binary number base has substantial advantages in performance 
and versatility for addresses, for contro1 data that are naturally in binary 
form, and for numerical data that are subjected to a great dea1 of arith- 
metical processing. Figures of merit are difficult to assign because the 
performance and cost of a given computer design depend on a great 
many factors other than the number base. I t  is clear, however, that 
decimal representation has an inherent loss in performance of at  least 
20 to 40 per cent as compared with binary representation and that refined 
design with increased cost can overcome this loss only in part. The 
decrease in efficiency makes itself felt in a number of ways; so the com- 
bined effect on over-al1 performance may be even greater than the per- 
centage indicated. 

It is equally clear, however, that a computer that is to find application 
in the processing of large files of information and in extensive man- 
machine communication must be adept a t  handling data in human- 
readable form; this form includes decimal numbers, alphabetic descrip- 
tions, and punctuation marks. Since the volume of data may be great, 
it is important that binary-decima1 and other conversions should not 
become a burden greatly reducing the effective speed of the computer. 

Hence it was decided to combine in the design of the IBM 7030 the 
advantages of binary and decimal number systems. Binary addressing 
has been adopted for its greater flexibility; each bit in memory has a 
separate address, and the length of a word in memory is a power of 2 
(64 bits). Binary arithmetical operations are provided for manipulating 
these addresses and for performing floating-point arithmetic a t  extremely 
high speed. Efficient binary-decima1 conversion instructions minimize 



the conversion time for input and output data intended for use in exten- 
sive mathematical computation. Decima1 arithmetic is also included in 
the instruction repertoire, in order to permit simple arithmetical oper- 
ations to be performed directly on data in binary-coded decimal form. 

Such a combination of binary and decimal arithmetic in a single com- 
puter provides a high-performance t001 for many diverse applications. 
It may be noted that a different conclusion might be reached for a com- 
puter with a restricted range of functions or with performance goals 
limited in the interest of economy; the difference between binary and 
decimal operation might well be considered too small to justify incorpo- 
rating both. This conclusion does appear valid for high-performance 
computers, regardless of whether they are aimed primarily a t  scientific 
computing, business data processing, or real-time control. To recom- 
mend binary addressing for a computer intended for business data proc- 
essing is admittedly a departure from earlier practice, but the need for 
handling and storing large quantities of nonnumerical data makes the 
features of binary addressing particularly attractive. In the past, the 
rea1 obstacle to binary computers in business applications has been the 
difficulty of handling inherently decimal data. Binary addressing and 
decimal data arithmetic, therefore, make a powerful combination. 



Chapter 6 

CHARACTER SET 
by R. W. Bemer a n d  W. Buchholz 

6.1. Introduction 

Among the input and output devices of a computer system, one can 
distinguish between those having built-in codes and those largely insensi- 
tive to code. Thus type~r i t~ers  and printers necessarily have a fixed code 
that represents printable symbols to be read by the human eye; a code 
must be choseii for such a device in some more or less arbitrary fashion, 
and the device must make the transformation between code and symbol. 
Data st'orage and transmission devices, on the other hand, siich as mag- 
netic tape units and telephone transmission terminals, merely repeat the 
coded data given to them without interpretation, except that some code 
combinations may possibly be used to contro1 the transmission process. 
(Strictly speaking, storage aiid transmission devices do generally limit 
the code strutture in some respect, such as maximum byte size, so that 
code sensitivity is a matter of degree.) 

For the inherently code-sensitive devices to be attached to a new com- 
puter system, an obvious choice of character set and code would have 
been one of the many sets already established. When the existing sets 
were reviewed, however, none were found to have enough of the system 
characteristics considered desirable. In fact, it became clear that about 
the only virtue of choosing an already established set is that the set 
exists. Accordingly, it was decided, instead, to devise a new character 
set expressly for use throughout a modern computer system, from input 
to output. The chief characteristic of this set is its extension to many 
more different characters than have been available in earlier sets. The 
extended set designed for the 7030 (Fig. 6.1) contains codes for 120 
different characters, bue there is room for later expansion to up to 256 
characters including contro1 characters. In addition, useful subsets have 
been defined, which contain some but not al1 of these 120 characters and 
which use t'he same codes for the select ed characters without tran~lat~ion. 
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It should be noted that the 7030 computer is relatively insensitive to 
the specific choice of code, and any number of codes could be successfully 
used in the system. For any particular application a specialized charac- 
ter code might be found superior. In practice, however, a large computer 

Bits 0-1-2-3 

Bits 


4-5-6-7
-

FIG.6.1. 120-character set. 

installation must dea1 with a mixture of widely different applications, and 
the designers have to choose a single character set as a compromise among 
conflicting requirements. 

The purpose of this chapter is to list major requirements of a character 
set and code, and to point out how these requirements may or may not 
be met by the specific set to be described. 



Present IBM 48-character sets consist of 

1. 10 decima1 digits 
2. 26 capita1 letters 
3. ll special characters 
4. 1 blank 

Other manufacturers have employed character sets of similar or some- 
what larger size. 

Because a single set of eleven special characters is not sufficient,, there 
exist severa1 choices of special characters as "standard options." 

Since this 48-character set is often represented by a 6-bit code, it is 
natura1 to try to extlend it to 63 characters and a blank, so as to exploit 
the fu11 capacity of a 6-bit code.' Although the extra sixteen characters 
would indeed be very useful, this step was thought not to be far-reaching 
enough to justify developmeiit of the new equipment that it would 
require. 

As a minimum, a new set should include also: 

5.  26 lower-case letters 
6. The more important punctua,tion symbols found on al1 office 

tlypewrit8ers 
7. Enough mat.hematica1 and logica1 symbols to satisfy the needs of 

such programmiiig languages as ALGOL2*3 

There is, of course, no definite upper limit on the number of characters. 
One could go to the Greek alphabet, various type fonts and sizes, etc., 
and reach numbers well into the thousands. As set size increases, how- 
ever, cost and complexity of equipment go up and speed of printing goes 
down. The actual choice of 120 characters was a matter of judgment; 
it was decided that this increment over existing sets would be sufficiently 
large to justify a departure from present codes and would not include 
many characters of only margina1 value. 

6.3. Subsets 

Two subsets of 89 and 49 characters were chosen for specific purposes. 
The 89-character set (Fig. 6.2) is aimed a t  typewriters, which, with 44 

H. S. Bright, Letter to the Editor, Communs. ACM, vol. 2, no. 5, pp. 6-9, May, 
1959 (a 64-character alphabet prsposal). 

A. J. Perlis and K. Samelson, Preliminary Report: International Algebraic Lan- 
guage, Communs. ACM, vol. 1, no. 12, December, 1958. 

Peter Naur (editor), Report on the Algorithmic Language ALGOL 60, Communs. 
ACM, vol. 3, no. 5, May, 1960. 



character keys, a case shift, and a space bar, can readily handle 89 
characters. This subset was considered important because input-output 
typewriters can already print 89 characters without modification, and 
44-key keyboards are familiar to many people. 

The 49-character subset (Fig. 6.3) is the conventional set of "com-
mercial" characters in a code compatible with the fu11 set.l This subset 
is aimed a t  the chain prinier mechanism used with the 7030, which can 
readily print character sets of different sizes but prints the larger sets a t  
a reduced speed. The 49-character subset permits high-volume printing 
a t  high speed in a compatible code on jobs (such as bill printing) where 
the extra characters of the fu11 set may not be needed. I t  should be noted 
that the 49-character set is not entirely a subset of the 89-character set. 

Other subsets are easily derived and may prove useful. For example, 
for purely numerica1 work, one may wish to construct a 13-character set 
consisting of the ten digits and the symbols . (point) and - (minus), 
together with a special blank. 

6.4. Expansion of Set 

Future expansion to a set larger than 120 can take place in two ways. 
One is to assign additional characters to presently unassigned codes; 

allowance should then be made for certain contro1 codes which will be 
needed for communication and other devices and which are intended to 
occupy the high end of the code sequence. 

The second way is to define a shift character for '(escape" to another 
character ~ e t . ~  Thus, whenever the shift character is encountered, the 
next character (or group of characters) identifies a new character set, and 
subsequent codes are interpreted as belonging to that set. Another shift 
character in that set can be used to shift to a third set, which may again 
be the first set or a different set. Such additional sets would be defined 
only if and when there arose applications requiring them. 

6.5.Code 

In choosing a code structure, many alternatives were considered. 
These varied in the basic number of bits used (i.e., the byte size) and in 
the number of such bytes that might be used to represent a single (print- 

l Note that this is one character larger than the previously referred-to 48-character 
set. The additional special character was introduced in 1959 on the printer of the 
IBM 1401 system; but its use has not become firmly established, partly because it 
has no counterpart on the keypunch. Thus the 48- and 49-character sets are, in 
effect, the same set. 

R. W. Bemer, A Proposal for Character Code Compatibility, Communs. ACAi, 
vol. 3, no. 2, February, 1960. 



I Bits 0-1-2-3 

FIG.6.2. 89-character set. 

able) character. Among the alternatives were the following: 

Single 6-bit byte with shif t codes interspersed 
Double 6-bit byte = single 12-bit bytel 
Single 8-bit byte 
Single 12-bit byt'e for "standard" characters (punched-card code) and 

t,wo 12-bit bytes for other characters 

Some of these codes repsesent ed attempts to retain partial compati- 
bility v i th  earlier codes so as to take advantage of existing equipment. 

R. W. Bemer, A Proposal for a Generalized Card Code for 256 Characters, Corn-
mzins. ACM,  vol. 2, no. 9, September, 1959. 



I Bits 0-1-2-3 

FIG.6.3. 49-character set. 

These attempts were abandoned, in spite of some rather ingenious pro- 
posals, because the advantages of partial c~mpat~ibility were not enough 
to offset the disadvantages. 

The 8-bit byte was chosen for the following reasons: 

1. Its fu11 capacity of 256 characters was considered to be sufficient 
for the great majority of applications. 

2. Within the limits of this capacity, a single character is represented 
by a single byte, so that the length of any particular record is not depend- 
ent on the coincidence of characters in that record. 

- 3. 8-bit bytes are reasonably economica1 of storage space. 



4. For purely numerica1 work, a decimal digit can be represented by 
only 4 bitls, and two such 4-bit bytes can be packed in an 8-bit byte. 
Altlhough such packing of numerica1 data is not essential, it is a commoii 
practice in order to increase speed and storage efficiency. Strictly speak- 
ing, 4-bit bytes belong to a different code, but the simplicity of the 4-aiid- 
8-bit scheme, as compared with a combination 4-and-6-bit scheme, for 
example, leads to simpler machine design and cleaner addressiiig logic. 

5. Byt'e sizes of 4 and 8 bits, being powers of 2, permit the computer 
designer to take advantage of powerful features of binary addressing and 
indexing to the bit leve1 (see Chaps. 4 and 5 ) .  

The eight bits of the code are here numbered for identification from 
left to right as O (high-order bit) to 7 (low-order bit). "Bit 0" may be 
abbreviated to Bo, "bit 1" to B1, etc. 

6.6. Parity Bit 
For transmitting data, a ninth bit is attached to each byte for parity 

checking, and it is chosen so as to provide an odd number of 1 bits. 
Assuming a l bit to correspond to the presence of a signal and assuming 
also an independent source of timing signals, odd parity permits al1 256 
combinations of 8 bits to be transmitted and to be positively distinguished 
from t'he absence of information. The parity bit is identified here as 
"bit P" or Bp. 

The purpose of defining a parity bit in conjunction with a charact'er set 
is to establish a standard for communicating between devices and media 
using t,his set. It is not int'ended to exclude the p~ssibilit~ies errorof 
correction or other checking techniques within a given device or on a 
given medium mhen appropriate. 

High-equal-low comparisons are an important aspect of data process- 
ing. Thus, in addition to defining a standard code for each character, 
one must also define a standard comparing (collating) sequence. Obvi-
ously, the decimal digits must be sequenced from O to 9 in ascending 
order, and the alphabet from ,4 to Z. Rat'her more arbitrary is the 
relationship between groups of characters, but the most prevalent con- 
vention for the 48 IBM "commercial" characters is, in order: 

(Low) Blank 
Special characters . 
Alphabetic characters 

& $ * - / , % # @ 
A to Z 

(High) Decima1 digits O to 9 

Fundamentally, the comparing sequence of characters should conform 
to the natura1 sequence of the binary integers formed by the bits of that 



code. Thus 0000 01 00 should follow 0000 001 1. Few existing codes 
have this property, and i t  is then necessary, in effect, to translate to a 
special interna1 code during alphanumeric comparisons. This takes extra 
equipment, extra time, or both. An important objective of the new char- 
acter set was to obt,ain directly from the code, without translation, a 
usable comparing sequence. 

A second objective was to preserve the existing convention for the 
above 48 characters within ihe new code. This objective has not been 
achieved because of conflicts with other objectives. 

The 7030 set provides the following comparing sequence without any 
translation : 

(Low) 

(High) 

Blank 
Special characters (see chart) 
Alphabetic characters a A b B c C to z Z 
h'umerical digits O o 1 ,to 9 
Special characters . : - ? 
Unassigned character codes 

Note that the lower- and upper-case letters occur in pairs in adjacent 
positions, following the convention established for directories of names. 
(There appeared to be no rea1 precedent for the relative position within 
the pair. The case shift is generally ignored in the sequence of names 
in telephone directories, even when the same name is spelled with eit'her 
upper- or lower-case letters. This convention is not usable in general, 
since each character code must be considered unique.) 

The difference between this comparing sequence and the earlier con- 
vention lies only in the special characters. Two of the previously avail- 
able characters had to be placed a t  the high end, and the remaining special 
characters do not fa11 in quite the same sequence with respect to one 
another. I t  was felt that the new sequence would be quite usable and 
that it would be necessary only rarely to re-sort a file in the transition 
to the 7030 code. It is always possible to translate codes to obtain any 
other sequence, as one must do with most existing codes. 

6.8.Blank 

The code 0000 0000 is a natura1 assignment for the blank (i.e., the 
nonprint symbol that represents an empty character space). Xot only 
should the blank compare lower than any printable character, but also 
absence of bits (other than the parity bit) corresponds to ahsence of 
mechanical movement in a print mechanism. 

Blanlc differs, however, from a null character, such as the all-ones code 
found on paper tape. Blanlz exists as a definite character occupying a 
definite position on a printed line, in a record, or in a field to be compared. 



A nu,ll may be used to delete an erroneous character, and it would be 
completely dropped from a record a t  the earliest opportunity. Null, 
therefore, occupies no definite position in a comparing sequence. A null 
has not been defined here, but it could be placed when needed among the 
contro1 characters. 

Considering numerical work only, it would be aesthetically pleasing to 
assign the all-zeros code to the digit zero, that is, to use 0000 as the 
common zone bits of the numeric digits (see below). In alphanumeric 
work, however, the comparing sequence for blanlc should take preference 
in the assignment of codes. 

6.9. Decimal Digits 

The most compact coding for decimal digits is a 4-bit code, and t'he 
natura1 choices for encoding O to 9 are the binary integers 0000 to 1001. 
As mentioned before, two such digits can be packed int,o an 8-bit byte; 
for example, the digits 28 in packed form could appear as 

If decimal digitIs are t'o be represented unambiguously in conjunction 
with other characters, they must have a unique 8-bit representation. 
The obvious choice is to spread pairs of 4-bit bytes into separate 8-bit 
bytes and to insert a 4-bit prefix, or zone. For example, the digits 28 
might be encoded as 

xxxx O010 xzzx IO00 

where the act,ual value of each zone bit x is immat]erial so long as the 
prefix is the same for al1 digits. 

This requirement conflicted with requirements for the comparing 
sequence and for the case shift. As a result, the 4-bit byte is offset by 
1bit, and the actual code for 28 is 

This compromise retains the binary integer codes 0000 to 1001 in 
adjacent bit positions, but not in either of the two positions mhere they 
appear in the packed format. 

The upper-case counterparts of the norma1 decimal digits are assigned 
to italicized decimal subscripts. 

The most commonly foiind devices for key-recording input to a com- 
puter system are the IBM 24 and 26 keypunches, but their keyboards 
are not designed for keying both upper- and lower-case alphabetic char- 
acters. The shifted positions of some of the alphabetic characters are 
used to punch numerical digits. For key-recording charact'er sets wit h 



much more than the basic 48 characters, it is necessary to adopt a key- 
board convention different from that of the keypunch. The 89-character 
subset was established to bring the most important characters of the fu11 
set within the scope of the common typewriter, thus taking advantage of 
the widespread familiarity with the typewriter keyboard and capitalizing 
on existing touch-typing skills as much as possible. 

The common typewriter keyboard consists of up to 44 keys and a sepa- 
rate case-shift key. To preserve this relationship in the code, the 44 keys 
are represented by 6 bits of the code (B1 to Bg) and the case shift by a 
separate bit (B7). The case shift was assigned to the lowest-order bit, 
so as to give the desired sequence between lower- and upper-case letters. 

For ease of typing, the most commonly used characters should appear 
in the lower shift (B7 = O). This includes the decimal digits and, when 
both upper- and lower-case letters are used in ordinary text, the lower- 
case letters. (This convention differs from the convention for single-case 
typewriters present'ly used in many data-processing systems; when no 
lower-case letters are available, the digits are naturally placed in the same 
shift as the upper-case lett'ers.) I t  is recognized that the typewriter key- 
board is not the most efficient alphanumeric keyboard possible, but it 
would be unrealistic t'o expect a change in the foreseeable future. For 
purely numerica1 data, it is always possible to use a 10-key keyboard 
either instead of the typewriter keyboard or in addition to it. 

I t  was not practical to retain the upper- and lower-case relationships 
of punctuation and other special characters commonly found on type- 
writer keyboards. There is no single convention anyway, and typists 
are already accustomed to finding differences in this area. 

The 52 characters of the upper- and lower-case alphabets occupy 52 
consecutive code positions without gaps. For the reasons given above, 
it was necessary to spread the ten decimal digits into every other one of 
twenty adjacent code positions, but the remaining ten positions are filled 
with logically related decimal subscripts. The alphabet and digit blocks 
are also contiguous. Empty positions for additional data and contro1 
characters are al1 consolidated a t  the high end of the code chart. 

This grouping of related characters into solid blocks of codes, without 
empty slots that would sooner or later be filled with miscellaneous char- 
acters, assists greatly in the analysis and classification of data for editing 
purposes. Orderly expansion is provided for in advance. 

A basic principle underlying the choice of this set is to have only one 
code for each character and only one character for each code. 



Much of the lack of st~andardization in existing character sets arises 
from the need for more characters than there are code positions available 
in the keying and printing equipment. Thus, in the existing 6-bit IBM 
character codes, tlhe code 001100 may stand for any one of the three 
characters @ (at), - (minus), and (apostrophe). The 7030 set was 
required to contain a11 these characters with a unique code for each. 

The opposite problem exists too. Thus, in one of the existing Ci-bit 
codes, - may be represented by either l00000 or 001 700. Such an 
embarrassment of riches presents a logica1 problem when the two codes 
have in fact the same meaning and can be used interchangeably. No 
amount of comparing and sorting will bring like items together unti1 
one code is replaced by the other everywhere. 

In  going to a reasonably large set, it was necessary to resist a strong 
temptation to duplicate some characters in different code positions so as 
to provide equa1 facilities in various subsets. Instead, every character 
has been chosen so as to be typographically distinguishable if it stands 
by itself wit'hout context. Thus, for programming purposes, it is possi- 
ble to represent aiiy code tlo which a character has been assigned by its 
unique graphic syinbol, even when the bit grouping does not have the 
ordinary meaning of t hat character (e.g., in operation codes). 

In many instances, however, it is possible to find a substitute character 
dose eilough to a desired character to represent it in a more restricted 
subset or for other purposes. For example, = (equals) may stand for +-

(is replaced by) in an 89-character subset. Or again, if a hyphen is 
desired that compares lower than the alphabet, the symbol + (a modi- 
fied tilde) is preferred to the more conventional - (minus). 

A long-standing source of confusion has been the distinction between 
upper-case "oh" (0)and zero (0). Some groups have solved this problem 
by writing zero as $3. Unfortunately, other groups have chosen to write 
"oh" as e). Xeither solution is typographically at>tractive. Inst,ead, it is 
proposed to modify tlhe upper-case "oh" by a center dot (leaving the zero 
without the dot) and to write and print "oh" as O whenever a distinctiori 
is desired. 

Various typographic devices are used to distinguish lett'ers (I, 1, V, 
etc.) from other characters [ / (stroke), 1 (one), V (or), etc.]. I t  is sug- 
gested that the italicized subscripts be underlined when handwritten by 
themselves, for example, 5.  

-

6.13 . Signs 

The principle of uniqueness implies a separate 8-bit byte to represent a 
plus or a minus sign. Keying and printing equipment also require sepa- 
rat.e sign characters. This pract'ice is, of course, rather expensive in 
storage space, but it was considered superior to the ambiguit'y of present 



6-bit codes where otherwise "unused" zone bits in numerica1 fields are 
used to encode signs. If the objective is to save space, one may as well 
abandon the alphanumeric code quite frankly and switch to a 4-bit 
decima1 coding with a 4-bit sign digit, or go to the even more compact 
binary radix. 

6.I 4. Tape-recording Convention 

As has been remarked before, data-recording media such as magnetic 
tape and punched cards are not inherently code-sensitive. I t  is obvi- 
ously necessary, though, to adopt a fixed convention for recording a code 
on a given medium if that medium is to be used for communication 
between different systems. 

Magnetic tape with eight, or a multiple of eight, information tracks 
permits a direct assignment of the 8 bits in the 7030 code to specific 
tracks. ~Magnetic tape with six information tracks requires some form 
of byte conversion to adapt the 8-bit code to the 6-bit tape format. The 
convention chosen is to distribute three successive 8-bit bytes over four 
successive 6-bit bytes on tape. This convention uses the tape a t  fu11 
efficiency, leaving no gaps except possibly in the last 6-bit byte, which 
may contain 2 or 4 nonsignificant O bits, depending on the length of the 
record. 

Thus successive 8-bit bytes, each with bits BOto B7,are recorded as 
shown in Table 6.1. 

TABLE6.1. CONVENTION RECORDING 6-TRACKTAPEFOR 8-BIT CODE ON 

Bits 

The parity bit is not shown. The parity bits for the 6-bit tape format 
are, of course, different from those of the 8-bit code; so parity conversion 
must be provided also. 

6.15. Card-punching Convention 

Since 80-column punched cards are a common input medium, a card- 
punching convei~t~ion Afterfor the 120 characters is likewise desirable. 
the possibility of a separate card code for the 120 characters was con- 
sidered-a code having the conventional IBM card code as a subsetl- 

Ibid.  



it was concluded that it would be better to punch the 8-bit code directly 
on the card. This does not preclude also punching the conventional code 
(limited to 48 characters) on part of the card for use with conventional 
equipment. Code translation is then needed only whenever the conven- 
tional card code is used; otherwise translation would be required for 
every column if advantage is to be taken of the new code in the rest of 
the system. 

The punching convention is given in Table 6.2. 
I n  addition, both hole 12 and hole 11 are to be punched in column 1 of 

every card containing the 7030 code, besides a regular 7030 character, 
so as to distinguish a 7030 card from cards punched with the conven- 
tional code. Eight-bit punching always starts in column 1 and extends 
as far as desired ;a contro1 code END (O l l 1l 1110) has been defined to 
terminate the 8-bit code area. Conventional casrd-code punching should 

Card row 

be confined to the right end of those cards identified with 12-11 punching 
in column 1. 

Since the parity bit is also punched, the 7030 area of a card cont'ains a 
checkable code. Note that "blank" columns in this area still have a hole 
in the Bp row. If only part of the card is to be punched, however, i t  is 
possible to leave t,he remaining columns on the right unpunched. 

6.16. List of 7030 Character Set 

A list of t,he 7030 character-set codes and graphic symbols is shown for 
reference in Fig. 6.4, which includes the nanies of the characters. 



Code 
P 0123 4567 Character Name 

Blank (Space) 
Plus or minus 
Right arrow 
(Replace s) 

Not equal 
And 
Left brace 
Up arrow 
(Start super- 
script) 

Right brace 
Or (inclusive) 
Exclusive Or 
Down arrow 
(End super- 
script) 

Double lines 
Greater than 
Greater than 
o r  equal 

Less  than 
Less  than or  
equal 

Left bracket 
Implies 
Right bracket 
Degree 
Left arrow (1s 
replaced by) 

Identica1 
Not 
Square root 
(Check mark) 

Percent sign 
Left slant (Re- 
verse  divide) 

Lozenge (Dia- 
mond) (~o te )  

Ab s olut e value 
(Vertical line) 

Number sign 
Exclamation 
point (Fac- 
torial) 

At sign 
Tilde (Hyphen) 

Code 
P 0123 4567 Character Name 

Ampersand 
Plus sign 
Dollar sign 
Equals 
Asterisk 
(Mult iply) 

Left parenthesis 
R ight slant 
(Divide) 

Right paren- 
thesis 

Gomma 
Semicolon 
Apostrophe 
(S ingle quote) 

Ditto (Double 
quote) 

Note: The character n has also 
been used. 

FIG.6.4. List of 7030 codes and characters. (Cont inued o n  next  paye.) 



Code Code 
P 0123 4567 Character Name P 0123 4567 Character Name 

Zero 
Subscript zero 
One 
Sub s cr ipt one 
Two 
Subscript two 
Three 
Subscript three 
Four 
Subscript four 
Five 
Subscript five 
Six 

Subscript s ix  
Seven 
Subscript seven 
Eight 
Subscript eight 
Nine 
Subscript nine 
Period (point) 
Colon 
Minus sign 
Question mark 

FIG.6.4 (Continued) 



Chapter 7 

VARIABLE-FIELD-LENGTH OPERATION 
by G. A. Blaauw, F. P. Brooks, Jr., and W. Buchholz 

7.1. Introduction 

Chapter 4 dealt with the fact that natural data units for fixed-point- 
arithmetic, logical, and editing operations vary considerably in length 
and structure. The variable-field-length instructions of the 7030 have 
been designed to make it possible to specify these natural data units 
simply and directly, thus saving time, space, and programming effort. 

The variable-field-length (VFL) data-handling operations may be 
divided into three classes: (1) arithmetical, (2) radix-conversion, and 
(3) logical-connective operations. VFL arithmetical and logical-connec- 
tive operations are both used also for processing alphanumeric data. 

The VFL instructions include the basic arithmetical repertoire (LOAD, 
STORE, ADD, COMPARE, MULTIPLY, DIVIDE)as well as interesting new oper- 
ations and features. More important, however, is the method of data 
definition employed by al1 VFL instructions. Each field, regardless of 
length, is treated as a separate entity independent of its neighbors. Each 
numerica1 field may have its own sign, if a sign is desired. Any overflow 
beyond the end of the specified field is signaled, but the next adjacent 
field is protected from inadvertent carry propagation. Similarly, any 
loss of significant bits caused by storing a result in a field of limited size 
is signaled. A result zero indicator shows the state of only the desired 
field, no more and no less. 

The flexibility needed for VFL operations is achieved most economi- 
cally by a seria1 data-handling mechanism. Seria1 data handling is 
relatively slow, but the objective here is not high speed for individua1 
instructions. (Where arithmetical speed is of the essence, the unnormal- 
ized floating-point mode should be used for fixed-point arithmetic-see 
Chap. 8.) The VFL instruct'ions are intended for such operations on 
complex data stryctures as format conversion and arranging for printing. 
Such operations can be performed by a seria1 VFL unit faster than by 
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a parallel fixed-length arithmetic and logic unit. Most of the seria1 
mechanism is actually concerned with the structure of the data and 
relatively little with the operation itself. Thus the choice of a seria1 
mechanism was not dictated by the cost of extra adder stages but by 
the complex switching that would have been needed to select an entire 
field of variable position, length, and structure, in parallel fashion- 
though it is granted that an elaborate parallel mechanism could have 
been designed that would do VFL operations even faster than a seria1 unit. 

VFL operations are particularly desirable in processing large volumes 
of data. Here the most important element of high performance is reduc- 
tion in storage space. With VFL operation more data can be held in 
storage units of fixed capacity (core memory, drums, or disks), which 
may permit a given problem to be solved more quickly or more problems 
to be tackled a t  one time by multiprogramming. With open-ended stor- 
age media (magnetic tape), over-al1 performance is often limited by the 
speed of data transmission; so the reduction in storage space obtained by 
varying the field length can result in a corresponding reduction in execu- 
tion time. 

7.2. Addressing of Variable-field-length Data 

As explained in Chap. 5 ,  the reason for choosing a memory word size 
of 64 bits, a power of 2, is that a binary address can be assigned to each 
bit in a memory word, mith continuous numbering of al1 bits in memory. 
Accordingly, t,he TTFL system has heen designed so that the memory may 
be looked on by the programmer as if it were one continuoiis horizontal 
string of bits, extending from address O a t  the left to the last memory bit 
a t  the right. Fields can be placed anywhere in memory rega,rdless of 
their lengths, overlapping memory-word boundaries when necessnry. 
The programmer merely specifies the address of the field, which is the 
address of the leftmost bit (the high-order bit in a numerical field) ,' and 
the length. Successive bits in the field have consecutively increasing 
address numbers; but these addresses are not referred to by the program, 
except when it is desired to operate explicitly on a portion of the field as 
if i t  were another field. The VFL system does the bookkeeping neces- 
sary to select the word or pair of adjacent words in memory and to select 
the desired array of bits in these words. 

The left-to-right memory-addressing convention, where a byte, field, 
or record is addressed by the address of its leftmost bit, is followed 
throughout the system. For purposes of arithmetic it might be thought 
more convenient to address numerical fields from t,he right, since seria1 
arithmetic always start s with the loxest-order digit. Keyed input and 
printed output data, on the ot,her hand, must follow the left-to-right 
sequence to which hiimans are acoiistomed. Because nonnumerical data 



rnay consist of long strings of bits, whereas numbers are relatively short, 
it seemed desirable to adopt a consistent left-to-right convention and 
impose the burden of temporarily reversing the sequence on the arith- 
metical pr0cesses.l This convention avoids the possibility of having 
different operations refer to the same field by two different addresses. 

The VFL instruction format (Fig. 7.1) contains a 24-bit operand 
address, of which the left 18 bits specify the memory word, and the right 
6 bits specify the bit within that word a t  which the field starts. The 
24-bit address is a homogeneous binary number, so that addresses rnay be 
computed by straightforward arithmetical processes. The operand 
address rnay be modified automatically by adding an index value that is 
also 24 bits long. Thus VFL instructions provide for indexing to the bit 
level. Indexing is specified by the index address I in the left half of the 
instruction word. (The second I field in the right half rnay be used for 
modifying the length, byte size, and o$set fields described below.) 

FIG. 7.1. VFL instruction format. 

Indicates full-length Progressive indexing Indicates VFL 
instruction Byte size instruction 

The address part of a VFL instruction rnay also be used as a data field 
of up to 24 bits in a mode called immediate addressing. Immediate 
addressing is useful for supplying short constants to the program. 

7.3. Field Length 

Address 
24 

The length of the field is specified as a number of bits and rnay range 
from 1 to 64. I t  would be nicer to have an essentially unlimited field 
length (as in the 256-character accumuiator of the IBM 705), but the 
cost of additional flip-flop registers (as compared with the relatively slow 
core storage used for the 705 accumulator) a>nd extra controls would have 
outweighed their usefulness. In numerica1 work 64 bits are usually ade- 
quat'e, and multiple-precision fixed-point arithmetic should only rarely be 
needed. For alphanumeric comparisons, which do often dea1 with long 
fields, a special comparison operation is provided to simplify the com- 
paring of multiple fields, so that long fields can readily be treated as 

1000 
4 

1 P Length 
4 3 6 

This is not a great burden, because a seria1 arithmetic unit must be capable of 
progressing, or jumping, from one end of a number to the other in either direction, for 
severa1 reasons. After a right-to-left subtraction, the unit rnay have to jump back 
to the right end for a second, recomplementing pass through the number. In division, 
the quotient must be developed digit by digit from left to right. 

BS 
3 

Offset 
7 

Operation 
code 1 I 

4 - 



severa1 shorter fields. In  the other operations where long fields are occa- 
sionally encountered, there are no carries between fields, and multiple 
operations can again be programmed quite easily. Hence the limitation 
to 64 bits as the maximum field size is not onerous. 

Al1 bits of a field are counted in the field length, including the sign 
bits of signed numbers. Thus the field lengths are additive. In  assign- 
ing memory space, adding the length of a field to its address gives the 
address of the next available memory space. The length of a record is 
the sum of the lengths of its fields. 

Byte Size 
Many data fields have an inner structure and are made up of a number 

of bytes, such as decimal digits or alphabetic characters. In some oper- 
ations, primarily decimal arithmetic, the contlrol circuits must observe 
the byte boundaries, since, during decimal addition for example, the 
carry between bits of one decimal digit has different properties from those 
of the carry between two adjacent decimal digits. In binary arithmetic 
tihe numerical part is homogeneous, al1 bits being treated alike, but the 
sign may require special treatment and is considered to be a separate byte. 
With alphabetic fields the byte boundaries are important for some func- 
tions, such as printing; other operations, such as loztding, storing, and 
(in a well-chosen code) comparing, can be performed as if the field mere a 
homogeneous binary number. 

The natura1 length of bytes varies. Decima1 digits are most economi- 
cally represented in a 4-bit code. The commonly used 6-bit alphanumeric 
codes are sufficient when decimal digits, a single-case alphabet, and a few 
special characters are to be represented. If this list is extended t80 a 
two-case alphabet and many more special characters, a 7- or 8-bit code 
hecomes desirable (see Chap. 6). A 3-bit octal code or a 5-bit alphabetic 
code is occasionally useful. There would be little use for bytes larger 
than 8 bits. Even with the common 12-bit code for punched cards, the 
first processing step is txanslation to a more compact code by table 
look-up, and during this process each column is treated as a 12-bit 
binary field. There would be no direct processing of longer fields in the 
12-bit code. 

It is common practice to employ throughout a computer a fixed byte 
size large enough to accommodate a 6-bit alphanumeric code. Since 
numerical data predominate in many applications, this simple represen- 
tation is fairly inefficient,: one-third of the bits in purely numerical digits 
are vacuous. The efficiency drops further as a larger alphabet is chosen. 
Another common practice is to use two different byte sizes, one to repre- 
sent purely numerical fields in a relatively dense code and another for 
alphanumeric fields where each character is represented by tmo decimal 



digits. Assuming that 4 bit's are used for a decimal digit, this 4-and-8-bit 
coding scheme is superior to the 6-bit code if numerica1 data occupy more 
than half the space or if a larger than 64-character alphabet is desired. 
A third scheme in current use allows 4-bit decimal digits and 6-bit alpha- 
numeric characters. 

The 7030 is unique in that the byte size is completely variable from 
1 to 8 bits, as specified with each VFL instruction. Bytes may also 
overlap word boundaries. 

7.5. Universal Accumulator 

Al1 VFL operations refer to an implied operand in the arithmetic unit. 
The principle was adopted in the design of both W L  and floating-point 
operations that the accumulator registers would always be the source of 
the major implied operand. Likewise, if one or more results are to be 
returned to the arithmetic unit, the major result is left in the accumu- 
lator ready for use as an operand in the next instruction. I t  should not 
be necessary to write extra instructions for moving operands within the 
arithmetic unit. Only in operations that require more than one implied 
operand (cumulative multiplication) or produce more than one result 
(division) is it necessary to load or unload an extra register; special 
registers are provided for these operations, and they are not used for 
any other purpose. 

This principle of the universal accumulator saves housekeeping instruc- 
tions, which are needed in many other computers, and simplifies excep- 
tion routines, because operations follow a more uniform pattern. 

7.6. Accumulator Operand 

In VFL operations the implied operand in the accumulator has a 
maximum length of 128 bits, not counting sign bits. The right end of 
the accumulator operand is defined by the o$set part of the instruction 
(Fig. 7.1). The offset specifies the number of bits between the right end 
of the accumulator and the start of the operand; i.e., a zero offset means 
that the operation starts at  the right end of the accumulator, and an 
offset of 17 that the operation starts at  t'he seventeenth bit from the right. 
The operation is executed in such a way that the right end of the accumu- 
lator operand lines up with the right end of the memory operand. This 
is done by selecting the bits from the desired register positions (not by 
shifting the entire contents of the register). 

The main purpose of specifying an offset is to provide a shifting oper- 
ation as part of every VFL instruction. No separate shift instructions 
are needed. Thus decimal points can be aligned without first reposition- 
ing the accumulator field. 

The offset might also be looked upon as a bit address within the 



accumulator. Because of the nature of an offset, the accumulator bit 
numbering goes from right tlo left], iii contrast with the left-to-right 
sequence in memory. 

7.7. Binary and Decimal Arithmetic 
Al1 VFL-arithmetic operations are available in both binary and deci- 

mal modes, depending on the setting of a binary-decima1 modijier bit, in 
the operat'ion code (Fig. 7.2). Strictly speaking, decimal multiplication 
and division are not executed directly. The instructions cause entry to 
a standard subroutine via the program-interrupt system, to take advan- 
tage of the higher speed of radix conversion and parallel binary arith- 
metic; since programs using these operations are written exactly as if they 
were executed directly, the distinction will not be made in this chapt'er. 

In  decimal arithmetic the accumulator operand is assumed to have a 
byte size of 4. The byte size of the memory operand is specified by the 

instruction, as mentioned before. 
When the result is stored, the byte 

Negative sign size in memory is again specified; with 
a byte size greater than 4, zone bits 

Arithmetic and are inserted in the high-order bit 

operations positions of every byte, these zone bits 
being obtained from the accumulator 

Modifier sign register where they are set up 
bits 

in advance as desired. This feature 
permits arithmetic to be performed Logical 

connectives 3 operations cOnnective directly in any alphanumeric code 
operaticm where the digits are encoded as binary 

FIG. 7.2. Details of VFL operation integers in the four low-order bit po- 
codes. sitions with conlmon zone bits in the 

high-order positions. l 
In binary arit,hmetic the byt,e-size ~pecificat~ion does not apply to the 

numerical part of binary numbers, which always have a homogeneous 
interna1 structure. Regardless of the byte-size specification (which is 

I t  should be remarked here that it was intended, a t  the time this feature was 
developed, to use such an alphanumeric code for the system. Subsequently other 
considerations entered the picture, and the &bit code described in Chap. 6 is not this 
kind of a code. In a compromise among conflicting requirements, the 4-bit portion 
representing the ten binary integers in the codes for the decimal digits was offset to 
the left by one bit position. Therefore, decimal arithmetic cannot be performed 
directly in this code. This loss is more apparent than real, however. In practice 
i t  is highly desirable to edit a,ll numerical input data for consistency, and it is nlmost 
essential to edit numerical output data to suppress zeros, insert commas, etc. Because 
editing usually involves table look-up, conversion between the 8-bit 7030 code and 
the 4-bit decimal-arithmetic code comes free and provides, moreover, the very desir- 
a.bIe dat,a compression made possible by a 4-bit code. 



used only to contro1 the sign byte-see below), binary arithmetic proceeds 
8 bits a t  a time, except that tlhe last byte is shortened a~tomat~ically if 
the field length is not a multiple of 8 bits. 

In both forms of arithmetic the accumulator operand is considered to 
occupy t,he ent,ire accumulator, regardless of the field length specified for 
the memory operand. When the accumulator is loaded, al1 bit positions 
to the left or right of the new field are set to zero. When a number is 
added to the accumulator contents, carries are propagated as far as neces- 
sary. Overflow occurs only in the rare case where a carry goes beyond the 
left end of the registers. 

7.8. Integer Arithmetic 

In the structure of arithmetic units, a distinction may be made between 
integer and fraction arithmetic according to the apparent position of the 
radix point. In  integer arithmetic al1 results are lined up a t  the right end 
of the registers, as if there were a radix point a t  the extreme right. In  
fraction arithmetic al1 results regardless of length are lined up a t  the left 
end of the registers (except for possible overflow positions), so that the 
apparent radix point is a t  the left. The binary and decimal VFL 
arithmetic in the 7030 is of the integer type, whereas the floating-point 
arithmetic (see Chap. 8) is of the fraction type. (Among earlier compu- 
t e r ~the 705, for example, uses integer arithmetic, and the 704 fraction 
arithmetic; some computers have employed intermediate positions for 
the radix point.) 

The distinction between integer and fraction arithmetic Is rather 
subtle, because a computer must in any case have shifting facilities so 
as to dea1 with integers as well as with pure or mixed fractions. The 
basic arithmetical operations produce the same result digits regardless of 
where the point is.' The difference lies in the alignment of the result of 
one operation with the operand of a subsequent operation. For example, 
if the product of a multiplication is added to another number without 
shifting, that number will be added to the low-order part of the product 
in integer arithmetic and to the high-order part of the product in fraction 
arithmetic. A similar distinction exists in the alignment of the result of 
an addition for subsequent use as a dividend. 

As an example of the integer approach, consider a decimal multiplica- 
1 I t  is assumed here that the arithmetic unit, whether of the integer or the fraction 

form, is designed to retain al1 result digits from any of the basic arithmetical oper- 
ations. For example, multiplication of two single-length numbers is assumed to 
produce a doulnle-length product. If a designer wished to have the principal multi- 
plication instruction produce only a single-length product, he would probably choose 
to keep the high-order part in fraction arithmetic or the low-order part in integer 
arithmetic. On the other hand, to facilitate double-precision arithmetic he would 
probably include a secondary operation to produce the other half of the product. 



tion followed by an addition, with a field length of 2 digits: 

If the same fields are put through the same operations in fraction arith- 
metic, without shif ting, the result will be 

In VFL arithmetic al1 operands are aligned a t  the right if the offset is 
zero. The integer approach was chosen because numerica1 VFL operands 
frequently have but few digits, which are subjected to relatively few 
arithmetical operations, and these are mostly additions or subtractions. 
There is thus little concern with loss of precision (which is discussed in 
Chap. 8) and hence no need for carrying many low-order guard digits. 
Aligning numbers a t  the right then reduces tlhe chances for overflow, so 
that rescaling is seldom needed. Moreover, in data-processing applica- 
tions most of the numbers are actually integers or else have only a few 
places to tlhe right of the point; the arithmetical processes for such num- 
bers are more easily visiialized in the int'eger form than in the fraction 
form. On the other hand, the alignment of VFL numbers is readily 
changed to any other radix-point location without extra instructions, by 
suitable adjustment of the offset, which is available in every VFL 
instruction. 

The choice of fraction arithmetic for flonting-point operations is dis- 
cussed in Chap. 8. 

7.9.Numerica1 Signs 

Signed numbers are represented throughout the system by their abso- 
lute value and a separate sign.' The sign bit is O for + and l for -. 

The sign bit is contained in a sign byte (Fig. 7.3) whose format depends 
on the byte size specified. In decima1 arithmetic it is convenient to have 
al1 bytes, including the sign byte, of equa1 size; for uniformity the same 
byte-size convention is applied in binary arithmetic, but only to the sign 
byte. 

When the byte size is l, the sign byt,e just consists of the sign bit (8). 
When the byte size is greater than 1, the extra hit, positions becoming 

l Complements may appear as intermediate results during the execution of an 
instruction (see Chap. 14), but they are always converted to absoliite-value form 
automatically. 



available are utilized for independent functions. As the byte size is 
increased, from 1 to 3 data Jlag bits ( T ,  U ,  and V) are attached to the 
right. These flag bits set corresponding indicators whenever an operand 
is fetched; the flag bit may be set by the programmer to signal, via the 
program interrupt system, exceptional conditions as desired. For byte 
sizes above 4, the previously mentioned zone 
bits are attached on the left of the sign bit. Byte size 1

VFL arithmetic may be performed on B 
either signed numbers or unsigned numbers 
from memory. For unsigned numbers the 
sign byte is omitted and the numbers are 

S T U V Byte size 4[113
assumed to be positive. The unsigned mod-
ifier bit in the instruction specifies the choice 
and determines whether the rightmost byte S T U V Byte size 6m 
of the number is to be treated as the sign 
byte or as containing the low-order numer- 
ical bits. 

The most important reason for providing 
an unsigned mode of arithmetic is the fact 
that in many data-processing applicatioiis 
most of the numerica1 data fields are inher- Sign 
ently positive. For instance, a count of bit 

physical items can only be positive; quanti- FIG.7.3. Sign byte. 
ties and prices in accounting transactions 
are positive, although the resulting balances may have either sign. 
For inherently positive quantities signs are redundant, and significant 
storage space can be saved by omitting sign bits. 

When signs are redundant they are usually omitted in the source data 
as well, to reduce manual recording effort. Some computers require al1 
numbers to be signed before arithmetic can be performed. The pro- 
gramming effort to insert signs where none are needed can be avoided by 
an unsigned mode of arithmetic. 

The unsigned mode is also needed in order to operate arithmetically on 
parts of fields, which generally do not have signs even when the entire 
field does. 

The accumulator operand always has a sign attached. Thus it becomes 
possible to operate with a mixture of signed and unsigned memory 
operands; for example, one can add an unsigned item field to a signed 
total field. When the result is stored in memory it is again possible to 
specify whether to omit or include the sign of the result. The accumu- 
lator sign is held in the 8-bit accumulator sign-byte register, which also 
contains the three data flags of the accumulator operand and four zone 
bits, according to the byte-size-8 format of Fig. 7.3. 



The VFL instructions contain another modifier bit that affects the 
signs, the negative sign modifier. If it is set to 1, this modifier causes an 
inversion of operand sign so that ADD becomes subtract, LOAD (which in 
some computers is called clear and add, or reset add) becomes clear and 
subtract, etc. This sign inversi011 is available for al1 arithmetical opera- 
tions by virtue of the common modifier bit. 

7.10. Indieators 

Every VFL operation sets cert,ain indicators to indicate important 
characteristics of the operand and the result. Operations other than 
comparison turn oli indicators that show whether the result is less than, 
equal to, or greater than zero, or whether the result sign is negative (which 
includes the possibility of a negative zero result, as well as a result less 
than zero). For comparison operations there is a separate set of indica- 
tors that show whether the accumulator operand was lower than, equal 
to, or higher than the memory operand. Since these indicators are set 
only by a compare instruction, it is possible to insert other instructions 
between this instruction and the conditional branch that tests the com- 
parison result ,wit hou t danger of destroying t he resul t. 

A comparison may be considered to be a subtraction with the result 
discarded and both operands left intact; so there is a direct correspond- 
ence between the result indicators and comparison indicators: 

Resutt indicators Comparison indicators 

Result less than zero Accumulator low 
Result zero A ccumulator equa1 
Result grealer than zero Accumulator high 
Result negative 

The lost carrp indicator is set if there is an overflow beyond the left end 
of the accumulator, but, as v-asmentioned earlier, the accumulator is long 
enough so that this would be a rare occurrence. An overflow is more 
likely to become apparent when the result is stored in memory. The 
memory field would normally be specified just long enough to accommo- 
date al1 expected results. A result overflow then means that the accum- 
ulator contains more significant bits than the memory field can hold, 
and the partial Jield indicator is turned on. If the partial jìeld indicator 
remains off after a store operation, there is assurance that al1 higher-order 
accumulator bits were 0. 

There are two add to memory operations which return the result of an 
addition to memory instead of to the accumulator. When the result 
goes to memory there may be a carry off the left end of the specified 



memory field even if there are no excess 1bits in the accumulator. The 
lost carry indicator is then turned on. 

The VFL mechanism thus protects fields adjacent to the specified field 
from being altered if an overflow occurs, and it signals the occurrence of 
overflow by the two, rather similar, result-exception indicators, lost carry 
and partial field. The reason for two separate indicators is that the two 
conditions indicated would normally be handled by different correction 
procedures. 

Another exception indicator is zero divisor, which, as the name implies, 
indicates an attempt to divide by zero, the DIVIDE operation having been 
suppressed. 

If the operand has been flagged with one or more data flags, the corre- 
sponding data Jtag indicators are set. The to-memory operation indicator 
distinguishes from al1 other operations those which return a result to 
memory; this is an aid in programming exception routines, since i t  
obviates detailed testing of operation codes to see where the result, which 
may have to be adjusted, has been sent. Finally, the indicators binary 
transit and decimal transit may be used to enter subroutines after the 
(binary or decimal) operand has been placed in the transit register; the 
decimal transit indicator is used, for example, to enter the subroutines for 
decimal multiplication and division. 

The result-exception, data-flag, and transit indicators may interrupt 
the program automatically. The result, comparison, and to-memory 
operation indicators are available only for programmed testing. 

7.1I. Arithmetical Operations 

The various VFL-arithmetic operations will be discussed here only 
briefly, with emphasis on nove1 operations and features. The reader is 
referred to the summary list in the Appendix and to the 7030 Reference 
Manual for more complete descriptions. 

LOAD (or a variant), LOAD WITH FLAG) and STORE are used to transfer 
operands from memory to accumulator or from accumulator to memory, 
respectively, replacing the previous content,~. ADD and ADD TO MEMORY 

form the sum of the memory and accumulator operands and return the 
sum to the accumulator or to memory, respectively (LOAD and STORE may 
be considered special cases of ADD and ADD TO MEMORY, obtained by turn- 
ing off one input to the adder). ADD TO MEMORY i~ part,icularly useful in 
single-address computers, in that it simplifies the process of adding an 
item to, or subtracting it from, one or more totals in memory. A variant 
is ADD OXE TO MEMORY, which makes it possible to develop counts in 
memory without disturbing the accumulator. 

Further variations of the norma1 addition operations are ADD TO MAG-



NITUDE and ADD MAGNITUDE TO MEMORE-,which are intended to be used for 
positive-integer arithmetic. Addition is algebraic, but the accumulator 
sign is taken to be positive and the result is not allowed to change sign; 
if the result would have been negative, it is replaced by 2;ero.l 

STORE ROUNDED is a nove1 instruction which stores a rounded result in 
memory while leaving the unrounded result in the accumulator for any 
further operations. The offset specifies the position a t  which rounding, 
by adding % to the absolute value, takes place, and t'he field is t8hen sent 
to memory, dropping al1 positions t'o t'he right of this one. 

There are severa1 variations of COMPARE. Al1 of them perform an 
algebraic subtraction and t'urn on a low, equal, or high indicator according 
to the result, but the numerica1 result is discarded and both operands are 
preserved in their origina1 form. Comparison may be either on proper 
numbers, according to algebraic sign conventions, or on nonnumerical 
data, with fields t'reated as unsigned binary numbers. 

One or more COMPARE IF EQUAL instructions are used following a 
COMPARE to continue comparison of fields longer than 64 bits. COMPARE 

FOR R ~ N G E  following COMPARE can be used to determine whether a 
quantity falls within a given range when exact equality is not desired. 
These three instructions are paralleled by another set of three (COMPARE 
FIELD, COMPARE FIELD IF EQUAL, and COMPARE FIELD FOR RANGE),which 
permit a portion of the accumulator to be compared with the memory 
operand. 

The regular MCLTIPLY instruction uses the accumulator operand as the 
multiplier and returns the product to the accumulator. Because it is 
often desired to add the product to a previous result, a cumulative multi- 
plication operation is also provided. Here the multiplier must first have 
been loaded into a special factor register by the inst'ruction LOAD FACTOR. 
Then MULTIPLI- AKD ADD forms the product of this factor with the memory 
operand and adds the result to the accumulator contents. The factor 
register remains undisturbed, and its eontents are still available if the 
same multiplier is to be used repeatedly. 

In  DIVIDE, the acciimulator operand is the dividend and the memory 
operand the divisor, with the quot'ient being ret<urned to the accumulator. 
At the same time a signed remainder is placed in a special remainder 
register, where it is available any time unti1 another division is per- 
formed. A noteworthy feature of t'his DIVIDE operation is that it does not 

1 This is a modification of operations independently proposed by Brooks and 
Murphy : 

F. P. Brooks, Jr., The Analytic Design of Automatic Data Processing Systems. 
Ph.D. thesis, Harvard University, 1956, p. 6.42. 

R. W. Murphy, A Positive-integer Arithmetic for Data Processing, IRA2 J.Research 
and DeveZopment, vol. 1, no. 2, pp. 158-170, April, 1957. 



require adjustment of the relative magnitudes of dividend and divisor to 
produce a proper result. In  other computers it has been necessary to make 
sure that division would not be halted by a dividend too large with respect 
to the divisor, with the possibility of error stops (or worse) if the numbers 
exceeded the predicted range. S o  scaling is needed in the 7030 for 
division to proceed, although sometimes it may be desired to offset the 
dividend relative to the divisor in order to obtain a specified number of 
significant quotient bits. The indeterminate case of a zero divisor is 
signaled by program interruption, and it is not necessary to make a test 
before every division. 

The WL-arithmetic instruction set may be extended by using the 
instruction LOAD TRASSIT A'ID SET for interpretive programming. The 
specified operand is loaded into a special register, the transit register, and 
a program interruption is initiated. A 7-bit field in the instruction can 
be used as a code of 128 pseudo operations by entering a table of branch 
instructions which lead to corresponding subroutines. This feature 
happened to be a by-product of the interpretive decimal multiplication 
and division scheme, but it is expected to become a useful programming 
tool. 

The radix-conversion operations provide for automatic conversion, 
either from decimal to binary radix and format or from binary to decimal. 
The numbers are treated as integers. For numbers other t'han integers, 
a multiplication by a suitable power of 10, in binary form, must be 
programmed. 

The basie instruction LOAD CONVERTED obtains the origina1 number 
from memory and places the converted result in the accumulator. Al1 
the format specifications of the VFL system are available. 

Another operation, LOAD TRASSIT loads the converted CO'IVERTED, 
resul t into the transit register, by-passing the accumulator. Two more 
operations, COXVERT and CONVERT DOUBLE,take the operand from the 
accumulator and return the result to the accumulator; these operations 
are designed to convert to or from binary numbers in the floating-point 
format. 

It is important to note that these operations combine the functions 
of format conversion, done eficiently by the seria1 arithmetic unit, and 
radix conversion, performed at  high speed by the parallel arithmetic unit. 

7.1 3. Logical Connectives of Two Variables 

The use of Boolean algebra to express logical functions is well known, 
and Fig. 7.4 shows some of the commonest functions of two logical vari- 
ables. The variables are called m and a, corresponding to the memory 



and accumulator operands. These logical connectives have found their 
way into the instruction repertoire of severa1 computers. 

There are sixteen ways of combining a pair of two-valued variables. 
By rearranging the notation of Fig. 7.4 and adding the rest of these func- 

m a 

o o 
o l 
l O 
1 l 

tions, a complet'e table can be made, as shown in Fig. 7.5. For each 
connective tlhe values of the function corresponding to the four possible 
c~mbinat~ions of bits m and a are shown under the heading Truth tables. 
The connectives are here labeled O to 15 according to the binary integer 

m A a  
p- 

o And 
a I i r i  V a 

O o O (Inclusive) Or o o l 1 
O 1 o l 
l 1 1  l 

m a 

o o 
o 1 
l O 
l l 

Connective 
Common 
names 

FIG. 7.4. Some common Boolean functions of two variables. 

l m  m a 

-l Not 7n O O 
1 O 1 
O 1 o 
O 1 l 

And 

m + + a  

O Exclusive or 
1 
l 
o 

Exclusive or 
Or 
Nor (dagger) 
Identity (match) 
Not 
Implication 
Not 

Not and (stroke) 

Truth tabtes l 
S ymbolic 

representalion 

FIG. 7.5. Complete table of logical connectives of two variables. 



formed by the 4 bits in the truth tables. Thus, with the particular 
arrangement chosen, the function and is connective 1and the function or 
is connective 7. The column a t  the right shows a representation of each 
function, in terms of symbols chosen in Chap. 6. 

The sixteen logical connectives include several that rnight be considered 
trivial, such as O and 15, which depend on neither variable, or 3 and 5 ,  
which merely reproduce one of the variables disregarding the other. 
Then again, connectives 4 and 13can be obtained from 2 and 1l simply by 
interchanging m and a, and the second half of the table is, of course, the 
same as the first half inverted. Thus it might appear economically wise 
to restrict the connective operations in a computer to a small set, such as 
that of Fig. 7.4. 

That al1 sixteen connectives be provided in the 7030 was originally 
proposed for the sake of completeness and as a matter of principle. I t  
was decided to specify connectives by placing the 4 bits of the desired 
truth table (Fig. 7.5) directly in the operation code of the instruction 
(Fig. 7.2). I t  was then discovered that the logic unit could be imple- 
mented very simply by connecting wires corresponding to bits m and a, or 
their inverse, and the specifier bits to 4 three-way and circuits feeding a 
four-way or circuit. Thus the Sxtra cost of furnishing al1 sixteen con- 
nectives was very low indeed. Moreover, it was found during explora- 
tory programming that the "trivial" connectives were used much more 
often than connectives depending on both variables, since they provide 
such common functions as setting, resetting, and inverting of bits. 

So far we have discussed connective operations on a single pair of 
binary variables with a single-bit result. To evaluate a complex logical 
statement with such operations, it is necessary to apply different con- 
nectives sequentially, one pair of variables at  a time. In other applica- 
tions, such as inverting or rnasking an array of bits, it is desirable to 
apply a single connective to a group of bits. The connect'ive operations 
are designed to make possible both modes of operation by means of the 
VFL mechanism; the field length specifies the number of bit's, from 1 to 64. 

7.14. Connective Operations 

The connective operations, like the other VFL operations, specify a 
memory operand by the address of the leftmost bit and by the field 
length in bits; the second operand is taken from the accumulat,or, and its 
right end is defined by the offset, as before. The connective specified by 
the above-mentioned 4-bit code in the instruction is applied to each pair 
of corresponding bits from memory (m) and accumulator (a) .  Some 
illustrative examples are shown in Fig. 7.6. 

There are three operations: CONNECT, which returns the result to the 
accumulator; COXNECT TO MEMORY,which returns the result to memory; 



and CONNECT FOR TEST, which leaves both operands intact and discards 
the result after recording certain tests that are always made after each 
of the three operations. 

One test determines whether al1 result bits are O and sets the result zero 
indicator. More comprehensive tests may be made on the basis of two 
bit counts which are developed from the results: the left-zeros count 
indicates the number of consecutive O bits between the 1eft end of the 
result field and the first 1 bit; the all-ones count gives the number of 1bits 
in the result. As an example, the low-order bit of the all-ones count gives 
the odd-even parity of the result field. 

Operands 
m 0 0 1 1 0 0 1 1  
a 1 0 0 1 0 1 1 0  

Left-zeros A ll-onesConnective Result 
count count 

O 0 0 1  ( m A a )  
O1 1  O ( m y a )  
O 1 1 1  ( m V a )  
1  0  l O 
1 0  l 1  ( m > a )  
l l l l (l) 

FIG.7.6. Examples of logica1 connectives. Field length and byte size are 8. 

Logica1 fields have no interna1 structure, each bit being independent of 
the others, and a byte size of 8 is specified as a rule. The accumulator 
operand is the same length as tnhe memory operand, al1 other accumulator 
bits being ignored. This is unlike the other VFL operations, which treat 
the entire accumulator contents as t,he implied operand. Thus LOAD not 
only places the memory operand in the accumulator, but also resets al1 
other bits to O;  CONKECT, on the other hand, changes only those accumu- 
lator bits which directly correspond to the specified memory bits, al1 
other bits being left unchanged. This very useful property of the connect 
operations allomrs independent use of different parts of the accumulator. 
In particular, COXNECT 0011 (see Fig. 7.5) can be used for assembly of 
data in the accumulator, and COSXECT TO MEMORY 0101 for storing selected 
portions of the accumulator. These functions are especially helpful in 
programming table references, either by address selection or by searching. 

Since the byte-size-determining mechanism is available, it has been put 
to use also in connective operations. When the byte size is less than 8, 
each memory byte is automatically filled with leading 0s to make 
an 8-bit byte before these are combined with 8-bit bytes from the 
accumulator. (The accumulator always operates with byte size 8 in 



connective operations, as compared with an automatic byte size of 4 in 
decima1 arithmetic.) The result bytes, also 8 bits long, are cut to the 
specified size in COXSECT TO MEMORY by deleting excess bits. The byte- 
size controls permit expansion or contraction of bytes, or selection, inter- 
leaving, and distribution of bits. 

The combined facilities of the connective operations constitute a 
complete, novel, and powerful system for operatiag upon groups of 
independent bits rather than numbers. They are perhaps the most 
significant new feature of the 7030. It has become clear that logica1 
operations are neither modifications of arithmetic nor auxiliaries to it, 
but are equa1 to arithmetic in importance. 



Chapter 8 

FLOATING-POINT OPERATION 
by S. G.Campbell 

In this chapter we shall first discuss the reasons for going to floating- 
point operation and cover some genera1 questioris concerning this mode 
of arithmetic. Then ?ve shall describe the implementation of floating- 
point arithmetic in the 7030 computer. 

GENERAL DISCUSSION 

8.1. Problems of Fixed-point Arithmetic 

Two basic problems in large-scale scientific computation are the range 
and the precision of numbers. The range of numbers is given by tlhe 
extreme values that the numbers may assume; too small a range will 
cause frequent overflow (or underflow) of numbers, requiring excessive 
intervention by the programmer. Precision refers to the number of 
digits (or bits) needed during the calculation to retain the desired number 
of significant digits (or bits) in the result; when the number of digits is 
insufficient, the progressive significance loss and the cumulative round-off 
errors, which usually occur as the calculation proceeds, may cause the 
results to be meaningless. 

Most of the early computers designed for scientific computation used 
$xed-point arithmetic. A number was represented by a fixed number of 
digits, and the machine was designed with the decima1 point (or binary 
point) in a fixed position, as in a mechanical desk calculator. This 
arrangement automatically implies a rat,her restricted natural range, 
which was commonly the interval from -1 to +1. Similarly the natural 
precision was a function of the fixed word length of, say, n digits, so that 
numbers within the natural range from -1 to +l (any number of abso- 
lute valire not exceeding unity) could be represented with a maximum 
error of R-"/2, where R is the radix used (most commonly 2 or 10). If 
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the natural precision of the machine was inadequate for a particular cal- 
culation (and in most early machines it was about 10 to 12 decima1 digits, 
or the equivalent), additional accuracy could be obtained by programming 
multiple-precision arithrnetic, that is, by using more than one word to 
represent a single number. Programmed multiple-precision operations 
were very slow relative to the corresponding single-precision operations 
performed on the natural unit of information, and they were wasteful of 
both data storage and instruction storage. 

The problem of range was handled by a completely different technique, 
commonly called scaling. There were severa1 approaches to scaling, 
depending upon the problem and upon the persuasion of those who 
analyzed and programmed it. Sometimes it was possible to scale the 
problem rather than the arithmetic. Obviously, numbers used in 
scientific calculations do not fa11 naturally within the unit interval, but 
such problems rnay be transformed into problems in the unit interval, 
solved there, and the results related back to the rea1 world. For example, 
if we are integrating some function f(z) between limits a and b, we may 
translate and compress uniformly by some factor RP the interval (a,b) 
into the unit interval (0,l) on the x axis, and compress f(x) uniformly on 
the y axis by some factor I-9 greater than the maximum absolute value of 
f(x) in the interval (a,b). The resulting integral is clearly less than unity 
in absolute value, as are al1 tlhe quantities involved in calculating it;  so 
the entire calculation can be performed in fixed-point arithmetic, and the 
unscaled value of the integral can be obtained by simply multiplying the 
scaled result by the factor Rpfq. Even in this simple example it is neces- 
sary to know the maximum value of the integrand, to perform a linear 
transformation on the function, and to scale it properly. 

For more complicated problems more and deeper analysis rnay be 
required; it rnay become impractical to scale the problem, but it is still 
possible to scale the arithmetic. Such scaling simply takes advantage of 
the fact that, with n digits in radix R, we can represent any number whose 
absolute value does not exceed RP with a maximurn error of Rp-"/2. 
(In the special case of p = n, the quantity represented is an integer.) 
The quantity p, which rnay be any integer, is sometimes called the scale 
factor and rnay be either implicit or explicit-that is, it rnay exist only in 
the mind of the programmer, who takes it into account in his calculat'ion, 
or it rnay appear explicitly in the computer memory. If the scale factor 
is explicit, scaling loops rnay be used to modify the scale factor as cir- 
cumstances dictate. In either case, a common scale factor p is shared 
by an entire set of numbers, the only condition being that no number in 
the set can be as large as RPin magnitude. 

The weaknesses of scaling the arithmetic are twofold: a considerable 
amount of mathematical analysis as well as side computation is involved 



in determining and keeping track of the scale factor; and the scale factor 
for an entire set of numbers is determined by the maximum value that 
any of them can achieve. The first difficulty has become more acute as 
the number of comput'ers has increased relative to the number of analysts 
and programmers. The second introduces a significance problem : given 
a common scale factor p, the actual difference k between the scale factor 
p and the order of magnitude of a given scaied fixed-point number causes 
Ic leading zeros to occur in the fixed-point number, leaving a maximum of 
n - k, instead of n, significant digits. It is thus possible for k informa- 
tion digits to be permanently lost. 

8 2  Floating-point Arithmetic 

To avoid difficulties of limited range and scaling in fixed-point arith- 
metic, G. R. Stibitz in the early 1940's proposed ari automatic scaling 
procedure, called jloating-point arithmetic, which was incorporated in the 
Bel1 Telephone Laboratories' Mode1 V Relay Computer.' A similar 
procedure was developed, apparently independently, for the Harvard 
Mark I1 c ~ m p u t e r . ~Automatic scaling was a controversia1 subject for 
quite a few years. Many opposed it on the basis that the programmer 
could not be relieved of the responsibility of kiiowing the size of his 
numbers and that programmed scaling would give him better contro1 
over significance. Yevertheless, as early as 1950, users began to incor- 
porate automatic scaling oli fixed-point computers by means of sub-
routines, first on the plugboard-controlled CPC (Card Programmed Cal- 
culator) and later on stored-program machines. Then, after it had thus 
proved its usefulness, floating-point arithmetic was provided as a built-in 
feature, starting with the IBM 704 and XORC computers, and this gave 
an enormous increase in speed over the subroutines. Today floating- 
point operat'ion is available, a t  least as an option, on al1 computers 
intended to be used full- or part-time on substantial scientific computing 
applications. In view of the almost universal use of floating-point 
arithmetic, it is remarkable that there is very little literature on the 
subject. 

In  floating-point (FLP) arithmetic each number has its own exponent 
(or scale factor) E, a,s well as a numerica1 part, the fraction F. The pair 
(E,F) represents the floating-point number 

l Engineering Research Associates, W. W. Stifler, Jr., editor, "High-speed Comput- 
ing Devices," p. 188, McGraw-Hill Book Company, Inc., New York, 1950. 

Ibid., p. 186. 



where E is a signed integer, and F is a signed fracti0n.l The exponent is 
variable and determines the true position of the decima1 or binary point 
of the number; whence the name JEoating point. 

The rules for combining FLP numbers follow directly from elementary 
arithmetic and the law of e x p ~ n e n t s . ~  

Multiplication : 
(E1,Fi) * (E2$72) = (E1 + E2, Fi * F2) (8.1) 

Division : 
(Ei,Fi) / (E2,F2) = (E1 - E2, Fi / F2) (8.2) 

Addition-S~btract~ion: 

Multiplication [Eq. @.l)] and division [Eq. (8.2)] are straightforward- 
the fractions are multiplied or divided, and the exponents are added or 
subtracted, respectively. Fractions and exponents can be manipulated 
simultaneously; so these operations take essentially the same amount of 
time as corresponding operations on fixed-point numbers of the same 
lengths as the fractions. (It should be noted, however, that fixed-point 
multiplication and division are often accompanied by extra scaling instruc- 
tions, which are avoided with floating point. Thus the built-in FLP 
operations actually take less over-al1 time than fixed-point multiplication 
and division.) 

Additions and subtractions [Eq. (8.3)] are more complex, because t'he 
radix points must be lined up first,. This is done, quite automatjcally, by 
comparing the exponents and shifting the fraction with the smaller 
exponent to the right by an amount equa1 to the difference in exponents. 
The addition or subtraction of the fractions then proceeds, and the larger 
exponent is attached to the result. These steps are essentially sequential; 
so FLP addition and subtraction geiierally take more time than fixed- 

l The term mantissa is often used instead of fraction, by a rather loose analogy with 
the terminology of logarithms. I t  is not necessary for the numerica1 part to be a 
proper fraction; it could just as well be made an integer or a mixed fraction by adjust- 
ing the exponent. This is largely a design choice. The exponent has been repre- 
sented in many machines by an unsigned number obtained by adding an arbitrary 
constant; this unsigned number has been called the characteristic. The signed- 
exponent notation is more natura1 and simpler to use, especially when fixed-point 
arithmetic is to be performed on the exponent separately. 

Following a convention established by the FORTRAS programming system, the 
symbols * and / are used here for explicitly stated multiply and divide operations, in 
preference to other common symbols that are harder to tgpe and mite ,  such as X, 
e, 
 and +. 



point addition and subtraction. (The speed relation, therefore, is the 
reverse of that for multiplication and division. ) 

The basic rules of FLP arithmetic are thus stated quite easily, but they 
lead to severa1 difficulties, of which some are fundamental and some can 
be resolved by more or less arbitrary decisions. One difficulty arises 
from the semilogarithmic nat'ure of FLP numbers. If multiplication and 
division were the only arit)hmet!ical operations, t'he fraction part wouid 
not be necessary and high-speed addition of the l~garit~hms (noninteger 
exponents) would suffice. Addition and subtraction, however, require 
the fraction parts, with the exponents restricted to integers, so as to 
permit the associated shifting operation. Hence FLP numbers are a 
mixture of rational numbers and logarithms, but the representation of a 
given number is not unique. For example, in decima1 notation, 

More important problems are presented by the singularities. Like 
fixed-point arithmetic, FLP arithmetic must provide for t'he occurrence 
of two quasi inj'inities (numbers whose absolute value is greater than the 
largest representable number; that is, the exponent exceeds its largest 
positive value) and of zero (t,he result of subtracting equa1 numbers), but 
the lack of a unique FLP representation introduces subtle questions. 
Thus a zero with a large exponent may represent a more significant 
quantity than a zero, or even nonzero, number with a small exponent. 
FLP arithmet,ic, unlike fixed-point arithmetic, must also allow for the 
possibility of two ZnJinitesirnals (numbers whose absolute value is less 
than the smallest representable number; that is, the exponent exceeds its 
largest negative value). IVhereas in fixed-point notation tlhe infinitesimals 
are indistinguishable from zero, a zero in FLP notation may have a true 
value quite different from an infinitesimal. (The ambiguity of zeros and 
infinitesimals does occur also in scaled fixed-point arithmet'ic, where the 
individua1 programmer has had to find his own way of programming 
around the difficulty. Built-in floating-point arithmetic removes the 
means of detecting singularities from the programmer's direct contro1 ; 
so the problem must now be faced by the designer.) 

Among the situations that may be corrected by decision making, the 
most glaring concerns the treatment of division. Since there is no 
guarantee that F1< F2, there is no guarantee that the quotient fraction 
will have a magnitude within the allowable range. This may be treated 
by ruling t.hat, if F i< F2, the division will proceed as in  Eq. (8.2);but if 
F1 2_ Fz, assuming Fl # Fz # 0, the quotient will he 



where p is an integer such that 

The result will alivays be arithmetically correct; in fact, it will be as 
precise as possible whenever Fl 2 F2. 

A different problem can arise In the case of a true addiiion (an addiiion 
involving operands of the same sign or a subtraction involving operands 
of different signs) whenever the resulting fraction exceeds the allowable 
range. This is a version of the familiar fixed-point-overflow problem and 
may be treated in the same way- by turning on an indicator to indicate 
t8hat a 1 has been lost off the high-order end of the fraction, leaving any 
desired corrective action to the programmer. Another solution is to 
replace the result (E,F) automatically by (E + 1, R-lF), which is done 
in normalized arithmetic (below) . 

Solutions to these difficulties of FLP arithmetic will be discussed in 
subsequent sections. 

8.3. Normalization 

To improve precision it is desirable to maintain as many significant 
digits as possible. To this end al1 leading zeros may be removed from the 
result of an operation by shifting the fraction to the left and decreasing 
the exponent accordingly. Thus the decima1 floating-point number 
(2, 0.006) when adjusted becomes (4, 0.600). Such numbers are called 
normalized, whereas numbers whose fractions are permitted to have lead- 
ing zeros are called unnormaiized. Floating-point arithmetic is called 
normalized or unnormalized depending on whether the normalization 
step is performed a t  the end or not. The operands of normalized opera- 
tions do not as a rule have to be normalized numbers themselves. 

Another function of normalization is to correct for overflow after an 
addit'ion by shifting the result fraction to the right unti1 the most signifi- 
cant digit is again in the high-order position and then appropriately 
increasing the exponent. Such a right shift to preserve the most signifi- 
cant digit may cause the loss of the least significant digit, but this is 
unavoidable. 

The singular quantity (E,O) cannot be normalized, since its fraction is 
al1 zeros; it is useful to regard (E,O) as both a normalized and an unnor- 
malized FLP number, since it may serve to indicate the order of magnitude 
of a result. Except for this and any other specially defined singularity, a 
normalized FLP number satisfies the inequality 



First-order singularities may occur when legitimate FLP operations are 
performed upon legitimate FLP operands 114th nonzero fractions. 
Siiigular results fa11 into three categories : 

1. Expon.ent oz~~r,fEou~.The exponent of the result exceeds the allo^-
able exponent range. This result is outside the allomable number 
representation and may be likened to a positive or negattive injircity, the 
sign being tlhat of the fract,ion. The symbol f will be used to represent 
such a number. 

2. Exponent underflow. The exponent of the result is negative and 
exceeds the allowable exponent range in magnitude. This result may be 
likened to a positive or negat'ive inJìnitesima.Z, since it is outaside (or 
inside!) the allowable number representation, is smaller than any 
legitimate quantity, and is definitely not zero (unless the fraction is zero). 
It has the same sign as the fraction. The symbol +r will be used. 

3. Zero fraction. This result can occur as a first-order singularity only 
from a true subt,raction witlh equa1 operands: 

The result is thus a,n indeterminate quantity with unknown sign, about 
which al1 that is knomn is that it satisfies the inequality 

where n is the number of fraction digits, and R is the radix. (E,O) may 
cover a wide range of values including the true zero. The exponent E 
and the n zeros of the fraction indicate the maximum order of magnitude 
correctly;hence t he name order-of-magnitude zero is often used. 

In dealing with first-order singularities of the FLP number system, there 
are two points of primary importance: provision for unambiguous indica- 
tion that a singularity has been created, and automatic tagging of the 
result. The zero fraction is suitable as a tag for an order-of-magnitude 
zero, but special tags are needed to distinguish exponent underflow 
and overflow from legitimate operands. 

Second-order singularities-those created by performing arithmetical 
operations upon one or more first-order-singular floating-point quantities 
-cannot in genera1 be handled automatically (and blindly) by the com- 
puter without creating serious problems. Nevertheless, it is reasonable to 
provide straightforward and fairly safe procedures for the standard auto- 



matic treatment of such cases, provided that the operands are again 
automatically tagged and that interrupt sigmls are available to permit 
programming of any other corrective action to take place, either imme- 
diately after the singular result is produced or later. 

8.5. Range and Precision 
Problems of range and problems of precision are often confuseda 

Programmers sometimes go to FLP arithmetic when they actually require 
multiple precision, and even to multiple precision when what they actually 
need is more range. 

Since the purpose of FLP arithmetic is to gain a vast increase in the 
range of representable numbers, range is seldom exceeded, but even when 
it is, range is not so serious a problem as precision. The exponent of a 
FLP number always indicates the range exactly, as long as the number is 
representable; one can, for instance, determine that a number is approach- 
ing, but has not exceeded, one of the limits of representation. If the 
exponent does overflow or underflow, the nature of the singularity may be 
indicated, or, if necessary, the range can be extended by using a multiple- 
precision exponent . 

There is no corresponding mechanism to record loss of precision. The 
fraction always contains the same number of digitls, and it is not imme- 
diately evident which digits are no longer significant-unless an order-of- 
magnitude zero is created by a single operation, so that al1 precision is lost 
a t  once. When serious precision loss takes place, it does not usually 
occur so dramatically. Rather, precision is lost by a process of gradua1 
attrition, and its departure remains unnoticed unless some sort of running 
significance check is made. More of this later. 

Al1 numerica1 calculation reduces ultimately to the question of pre- 
cision. Precision is, so to speak, limited a t  both ends of the calculation- 
limited a t  one end by the given precision of the input data and a t  the 
other end by the required precision of the result. Subject to considera- 
tions of time and cost, the gap between these limits must be adequately 
bridged by method and machine. If the machine is inadequate, the 
method used must make up for i t  ; and if the method is inadequate (as 
often happens through insufficient time, insufficient analysis, or poor 
definition of a problem), the machine must be designed to take up as much 
slack as possible. Insufficiencies of method can be partially compensated 
for by machine checks of exceptional conditions, just as programming 
difficulties can be lessened by provision of a more powerful instruction set. 

The two mechanisms that combine and interact to produce loss of 
precision in normalized FLP calculations are significance loss and round- 
off error. Volumes have been written about round-off error (perhaps 
more has been written about i t  than has been done about it), but only a 



few papers have been written about significance lossl (though i t  has 
possibly caused more noise to be accepted as pure signal). Most of the 
important work done on round-off error has in fact referred to fixed-point 
round-off and does not apply a t  al1 to the problems of normalized FLP 
round-off. Furthermore, it is doubtful that a valid FLP error analysis 
can be made without information on significance loss. The only pro- 
cedure that limits the effect of both significance loss and round-off error is 
to increase the number of fraction digits used, with considerations of cost, 
size, and speed dictating how far it is practical to go in this direction. 

Round-off Error 

Performing any of the four basic FLP-arithmetic operations upon FLP 
operands with n-digit fractions gives a result fraction of from n to 2n 
digits. In multiplication the product always has 2n digits. In division 
there are two results, the quotient and the remainderjdeach with an n-digit 
fraction. In  an addition or subtraction the result may range from n to 
2n digits, depending upon the amount of preshift; preshijt refers to the 
right shift of the fraction of the operand with the smaller exponent. (This 
shift may vary from no shift to a shift of 2n places; if the shift is more than 
2n places, we define the two qiiantities as incommensurate and take the 
quantity with the larger exponent as the result, with suitable sign 
manipulation.) In  normalized FLY arithmetic any operation may be 
followed by a normalizing left shift of less than 2n places to eliminate the 
leading zeros of the result fraction or by a normalizing right shift of one 
place to correct for overflow of the fraction. These shifts are referred to 
as postshifis. (Binary normalized FLP operations involve always a t  
least one preshift or one postshift or both.) 

In the interest of speed, economy of storage, and programming direct- 
ness, the result of a FLP-arithmetic operation is ordinarily reduced to the 
same number of digits n as are possessed by the operands from which the 
result was produced. The simplest and fastest way to accomplish t,his is 
to shorten the result by merely dropping al1 except the high-order digits; 
tlhis produces results that are consistently somewhat smaller in magnitude 
than the true value. 

To avoid the downward bias of the simplest method it is common 
practice to round the result by adding R--"/2 to the magnitude of the frac- 
tion before dropping the excess digits; this procedure also tends to reduce 
the magnitude of the error. This form of rounding poses difficulties: it 

l J. W. Carr, 111, Error Analysis in Floating Point Arithmetic, Commms. A C N ,  
vol. 2, no. 5, pp. 10-15, May, 1959; R. L. Ashenhurst and N. Metropolis, Unnor- 
malized Floating Point Arithmetic, J. ACM, vol. 6, no. 3, pp. 415-428, July, 1950; 
W. G. Wadey, Floating-Point Arithmetics, ibid.,vol. 7, no. 2, pp. 129-139, April, 1960. 



must follow normalization, is therefore postponed unti1 the operation 
is otherwise complete, and requires extra time and an extra register 
position to boot. A simpler but more artificial form of rounding is to 
force a 1 in the remaining least significant bit of the shortened result (in 
binary machiiles); although this decreases the bias, i t  does not decrease 
the maximum error, and it leads to logica1 problems. 

Rounding is, therefore, noi necessarily the best way to reniove excess 
digits. In fact, automatic rounding o11 al1 FLP operations can lead to 
serious problems of error analysis, and it gives n~ultiple-precision arith- 
metic a nightnlarish quality. (How do you unround a number?) The 
most prudent approach is to give the user his choice of how to contro1 
round-o$ error-this term being used for the error resulting from the loss 
of the extra digits, whether true rounding takes place or not. 

There are two important cases in which more than n digits are kept: 
1. The extra digits, which are normally discarded, rnay be required for 

some special purpose-e.g., the remainder rnay have to be kept and tested 
for zero in order to know whether the divisor was a perfect divisor. 

2. Multiple-precision arithmetic rnay be required because the natura1 
precision of the machine is inadequate for the particular computation; 
so al1 2n possible digits of the result must be made available. 

Higher precision is actually obtainable a t  little extra cost for some 
important activities even in single-precision calculation. For example, 
one of the most frequently occurring activities in scientific or statistica1 
problems is the calculation of the inner product Eaibi. This rnay be 
accomplished by cumulative multiplication, in which 2n-digit products of 
n-digit factors are repeatedly added to the 2n-digit partial sum, thus 
minimizing the effect of both round-off error and significance loss. 

8.7. Sipificance Checks 

Programmed significance checks have been used by programmers in a 
number of installations for many years and have proved effective in 
trappiilg many actual cases of total significance loss. When used with 
built-in FLP arithmetic, however, such a programmed significance check 
slows down effective arithmetic speeds by a considerable factor, for the 
significance check takes much more time than the actual arithmetic. 

The significance check rnay be built in. There are two possibilities: 
either the check rnay be made in parallel with the operation, in which case 
there is no time loss, but roughly logR n extra digits are required to keep 
the significance check (and such extra digits are required in al1 positions 
of data memory); or else a record of lost significance is encoded into the 
area of the fraction normally occupied by nonsignificant digits, requiring 
a t  least one extra flag digit and a relatively long time for encoding and 
decoding. Most users would rather keep any extra positions of storage 



to maintain more precision and use any extra equipment to improve the 
FLP instruction set itself. 

Another approach involves the injection of deliberate noise into the 
computation, so that results affected by significance loss will have a very 
high probability of indicating the loss by differences betweeii norma1 runs 
and "noisy" rum of the same problem. This approach, which requires 
little extra hardware and no extra storage, was chosen for the 7030. After 
an extensive search, the most effective technique turned out to be both 
elegant and remarkably simple. 

By definition of ordinary normalized FLP operations, numbers are 
frequently extended oli the right by att,aching zeros. During addition 
the n-digit operand that is not preshifted is extended with n zeros, so as to 
provide the extra positions to which the preshifted operand can be added. 
Any opera,nd or result that is shifted left to be normalized requires a 
corresponding number of zeros to be shifted in a t  the right. Both sets of 
zeros tend to produce numbers smaller in absolute value than they would 
have been if more digits had been carried. In the noisy mode these num- 
bers are simply extended with I s instead of zeros (ls in a binary machine, 
9s in a decima1 machine). Xow al1 numbers tend to be too large in 
absolute value. The true value, if t'here had been no significance loss, 
should lie betaeen these two ext'remes. Hence, two runs, one made with- 
out and one made with the noisy mode, should show differences in result 
that indicate which digits may have been affected by significance loss. 

The principal weakness of the noisy-mode procedure is that it requires 
two runs for the same problem. A much less important weakness is that 
the loss of significance cannot be guaranteed t.0 show up-it merely has a 
very high probability of showing up-whereas built-in significance checks 
can be made slightly pessimistic, so that actual signifieance loss will not 
be greater than indicated. On the other hand, little extra hardware and 
no extra storage are required for the noisy-mode approach. Further-
more, significance loss is relatively rare, so that running a problem twice 
xhen significance loss is suspected does not pose a serious problem. What 
is serious is the possibility of unsuspected significance loss. 

In discussions of significance two points are often overlooked. The first 
of these is trivial: the best way of ensuring significant results is to use an 
adequate number of fraction digits. The second is almost equally 
mundane: for a given procedure, normalized FLP arithmetic will ordi- 
narily produce the greatest precision possible for the number of fraction 
digits used. Kormalized FLP arithmet,ic has been criticized with respect 
to signifieance loss, because such loss is not indicated by the creation of 
leading zeros, as i t  is with fixed-point arithmetic. In other words, the 
contention is not that normalized FLP arithmetic is more prone to signifi- 
cance loss than equivalent fixed-point arithmetic, which would be untrue, 



but that an equivalent indication of such loss is not provided. Loss of 
significance, however, is also a serious problem in fixed-point arithmetic; 
multiplication and division do not handle i t  a t  al1 correctly by means of 
leading zeros. (In particular, fixed-point multiplication may lead to 
serious or even total significance losa, which would not have occurred with 
normalized FLP arithmetic; and although leading zeros in addition and 
subtraction of fixed-point operands do give correct significance indications, 
the use of other operations and of built-in scaling loops frequently 
destroys entirely the leading-zeros method of counting significance.) 

There are other points of common confusion between fixed- and floating- 
point calculation. For example, given a set of fixed-point numbers with 
a common scale factor, the most significant number is the one with the 
largest absolute value; accordingly, many optimal procedures depend 
upon selecting this element. Frequently, the equivalent normalized 
FLP procedure would be to select the element with most significance 
rather than the element of largest absolute value. In the absence of any 
information about significance, however, i t  is statistically best to pick 
the element of largest absolute value, since loss of significance is asso- 
ciated with a corresponding decrease in the exponent and so the element 
of largest absolute value does have the greatest probability of being also 
the most significant number. Similarly, fixed-point error analysis ordi- 
narily concentrates on some statistical characterization of the absolute 
error, whereas in normalized FLP operations it is the relative error that 
is important. Thus a polynomial approximation should be chosen to 
minimize the appropriate statistical function of the relative error, rather 
than the absolute error. (The relative error in FLP calculations is analo- 
gous to the noise-to-signal ratio in information theory. ) 

8.8. Forms of F l ~ a t i n ~ - ~ o i n t  Arithmetic 

It is difficult to formulate a single set of floating-point operations that 
would satisfy al1 requiremcnts. Kormalized operations are required for 
most of the heavy calculation, but there are uses for unnormalized oper- 
ations that cannot be ignored. Cnnormalized arithmet'ic is needed, for 
instance, to program multiple-precision operations; it may also be used 
for fixed-point calculation in lieu of separate high-speed fixed-point- 
arithmetic facilities that would otherwise be essential. (Thus the 7030 
has high-speed floating-point arithmetic as basic equipment, and it was 
decided to omit high-speed fixed-word-length fixed-point operations. 
This is the inverse of the situation with the early scientific computers, 
which had only fixed-point arithmetic unti1 a floating-point set was 
grafted on.) Again, in order to permit extended precision whenever 
necessary, double-length sums, products, and dividends (Le., numbers 
with 2n-digit fractions) should be available, but this would slow down 



al1 operations and penalize most applications, which require only single- 
lengtlh numbers (with n-digit fractions for operands and results). Hence 
both single- and double-length operations are desirable. 

Another decision, which only the user can make, is whether to round 
the results or izot. As mentioned before, true rounding tends to reduce 
errors but consumes extra time. Moreover, in actual practice, it is often 
desired to store the accumulator contents rounded to n digits mhile 
leaving the complete 2n-digit result in the accumulator for further 
calculation. 

The various procedures that result from decisions about normalization, 
roiinding, and the treat'ment of extra precision and of singular q~anti t~ies 
in reality define various FLP "arithmetics." A primary task in large- 
scale computation is determining which of these numerous "arithmetics" 
is really desired. 

8.9. Structure of Floating-point Data 

To each form of FLP arithmetic there corresponds a particular FLP 
data structure. Sometimes the same data struetiire can be used for 
different forms of arithmetic; normalized and unnormalized arithmetic 
are an example. In other cases different formats are required (as is 
obviously true for single- and double-precisi011 arithmetic). The machine 
designer must decide which arithmetics and corresponding data formats 
to build into the machine and which t30 leave to programming. In a 
given machine environment it is not usually practical to implement al1 
forms of FLP arithmetic and al1 formats that any potential user might 
possibly desire. The designer must, therefore, determine what facilities 
are needed to assist in programming the others. 

The FLP number itself may be regarded as composed of a t  least two 
partially independent parts (the exponent and the fraction) ;this becomes 
four parts if we consider the signs attached t,o each and increases to five 
or six parts if we flag the exponent, the fraction, or the entire number. 
In many situations it is desirable to nzanipulate one or more of these 
parts inclependently of the others, and such manipulation has been a 
source of much added programming complexity on earlier computers. 

The most fundamental question of numerica1 data structure is tjhat 
of the radix. This has been considered in genera1 terms in Chap. 5. 
The high storage efficiency of the binary system, as opposed to the deci- 
mal, is particularly important in extending both the range and the pre- 
cisioii of the &'LPniimber: a 10-bit exponent gives an exponent range of 
1,023, whereas the same bits used in the 4-bit coded decima1 rcprescn- 
tation will handle a maximum exponent of only 399. 

FLP arithmetic really involves three radixes: the radix RE used in the 
exponent r~presmtation, t,he radix RFused in the fraction representation, 



and the FLP radix R used in the representation (E,F) = FRE. In princi- 
ple these three radixes are independent; in practice they are not. If \ve 
were doing only unnormalized multiplication aiid division, al1 three 
radixes could be arbitrary integers greater than unity. But the neces- 
sity of preshifting before addition and subtraction aiid of postshifting 
for normalized operations implies that the FLP radix R must be some 
positive, integral, nonxero power of the fraction radix Rp, since snly 
shifts by integer amounts are meaningful. 

The exponent radix RE is still arbitrary. As a matter of fact, it would 
make perfectly good engineering sense in a decima1 floatiiig-point machine 
to make the FLP radix and the fraction radix both 10 and to let the 
exponent radix be 2. Thus, using the previous example of a 10-bit expo- 
nent, the range would be enlarged from for RE = 10 to for 
RE = 2 (a factor of and the decoding circuits for driving the pre- 
shifter would be simplified. On the other hand, proponents of either 
radix are likely to extend their reasoning to the exponent as well; so the 
exponent radix is ordinarily chosen to be the same as the fraction 
radix. 

Severa1 binary floating-point machines have been designed to use the 
floating-point radix R = 2k, where 7 is an integer greater than unity. 
If 7 = 3, the radix is octal; if 7 = 4, it  is hexadecimal. The Los Alamos 
MAKIAC I1 computer uses 7 = 8, that is, a FLP radix R of 256. The 
advantages of a larger FLP radix are twofold: the maximum range is 
extended from, say, Rm to Rkm; and the number of times that pre- and 
postshifts occur is drastically reduced, with a corresponding decrease in 
the amount of equipment required for equivalent performance. There is 
just one disadvantage: precision is lost through increased round-off and 
significance loss, because, with FLP radix 2k, normalized fractions may 
have up to 7 - 1 leading zeros. Such precision loss may partly be com- 
pensated for by decreasing the number of exponent bits and using the 
extra bits in the fraction instead. This reduces the gain in range in 
order to limit the loss in precision, but the advantage of reduced shifting 
is retained. I t  should also be noted that special procedures are avail- 
able to reduce the actual amount of shifting, particularly for the binary 
radix; the average amount of postshifting needed with normalized FLP 
arithmetic and R = 2 may be reduced, a t  the cost of extra equipment, 
unti1 it approximates that of R = 8. 

In practice, the use of a larger FLP radix results in an operation more 
nearly resembling scaled fixed-point calculation, except that it  is auto- 
matic. The designers of a particular FLP system must consider t,he 
radix problem in the light of the machine environment and the expected 
problem mix. There is no substitute for a careful statistica1 analysis of 
the various available procedures to determine the specific implementation. 



FLOATING-POINT FEATURES OF THE 7030 

8.1O. Floating-point Instruction Format 

The floating-point instructions in the 7030 use a tightly packed half- 
word format (Fig. 8.1), as do the indexing and branching instructions 
coinmonly associated with thein in high-speed computing loops. 

Normal ized-Unnormaiized 

/ /Absoiute value 

1 / /Negative sign 

- Codes for 
Indicates FLP instruction [Index 

Address Modifier 
bits 

FIG. 8.1. FLP instruction format. FIG. 8.2. Details of FLY operation code. 

The operation code (Fig. 8.2) consists of 5 bits to encode 29 different 
FLP operations and 3 modifier bits which apply uniformly to any of the 
29 operations. The three modifiers are: 

1. Normalization modifier. This specifies whether postnormalization 
is to take place (normalized) or not (unnormalized). 

2. Absolute ualue modifier. If set to 1, this specifies that the memory 
operand is to be considered positive, ignoring the actual sign in memory. 
(This modifier is analogous to the VFL umigned modifier, except that in 
the fixed-length FLP format the sign position is always there, whether 
used or not.) 

3. Negative sign modifier. If set to l ,  this inverts the sign of the 
unreplaced operand, that is, the memory operand in a from-memory 
operation or the accumulator operand in a to-memory operation. It is 
applied after the absoiute value modifier. Thus ADD and related oper- 
ations are changed to subtract operations, etc. (This is the same as the 
corresponding VFL modifier.) 

8.1 1. Floating-point Data Formats 

The FLP number occupies a fu11 64-bit memory word. The reasons 
for choosing as the length of the memory word a number of bits that is 
a power of 2 are discusseti in Chap. 5.  Considerations of speed dictated 
that a FLP number be located in a single memory word, so as to avoid 
the time penalty of crossing word boundaries. This soon restricted the 
choice to 64 bits; experience had shown that the 36-bit word of the 704 



would be too tight for a much more powerful machine but that lengths in 
the range of 50 to 60 bits would be adequate for most applications. 

Sixty-four bits certainly seemed to be a libera1 amount. A number 
longer than really necessary carries some penalty in extra equipment and 
possibly lower speed. (The possibility of a variable FLP number length, 
giving the user his choice of speed or storage efficiency, was discarded as 
impractical for reasons of both speed and cost.) Offsetting this penalty 
is the greater range and precision of single-length numbers, which reduces 
the amount of exception handling and permits fast single-precision oper- 
ations to be retained in many large jobs that would othermise require 
much slower multiple precision. 

The basic data format is shown in Fig. 8.3. It consists of a 12-bit 
exponent field and a 52-bit fraction field including a 4-bit sign field. The 
exponent field consists of 10 numerica1 bits, an exponent sign bit, and 
an exponent flag to signal a previous overflow or underflow. The sign 
field contains the fraction sign bit (the sign of the number) and three 
data flags which, a t  the programmer's option, may be used to mark 
exceptional data, such as boundary values. It should be noted that the 
Il-bit signed exponent and the 52-bit signed fraction are each compatible 
with VFL data formats, so that VFL instructicns can be used directly to 
execute those operations on parts bf a FLP number for which there are no 
specialized FLP instructions. One example is multiplication or division 
of exponents. 

The format of Fig. 8.3 is used for al1 FLP numbers in memory. The 
format in the accumulator is somewhat different (Fig. 8.4). For single- 
length numbers, the 12-bit exponent field and the 48-bit fraction field 
accupy corresponding positions in the left half of the accumulator. The 
4-bit sign field, however, is stored in a separate sign-byte register (as in 
VFL operations). The low-order 4 bits in the left half of the accumulator 
are not used, and neither is the right half of the accumulator. 

For double-length FLP numbers, that is, numbers with a 96-bit frac- 
tion, an additional 48 positions of the accumulator are activated; so the 
double-length fraction in the accumulator forms a homogeneous 96-bit 
number. The exponent and sign remain the same. Since the accumu- 
lator is 128 bits long, this leaves 20 bits unused in the right half. I t  
should be noted that the unused parts of the accumulator (shown shaded 
in Fig. 8.4 for the two classes of operations) are always left undisturbed 
during FLP operations and may be used for temporary storage of other 
kinds of data. 

Symbolically me can represent a single-precision FLP number as 

where Ef is the exponent flag, E the (signed) exponent, F the (unsigned) 



fraction, S the fraction sign, and T, U, V the data flags. Then the single- 
length format in the accumulator is given by (Ej,E,F) with S, T, U, V 
in the sign-byte register. The double-precision FLP format in memory 
becomes the pair (E~H,E,FH,S, TH, UH,VH), ( E ~ L ,  E - 48, FL, S, TL, UL, VL) .  
The exponent flags are usually, but not always, the same; the exponents 
differ by 48, except when one part is singular and the other part is not; 
the frilctions are independent, FL being a continuation of the fraction FH; 
the sign bits are identical, but the data flags may be independent. The 
double-length FLP number in the accumulator, however, is quite differ- 
ent: it is (EfH,E,FH,FL), with the sign-byte register containing S, T, U ,  V. 

F I G .  8.3. F L P  data format. 

:/h 
Exponent flag 

ExponenC (10 bits) 
Exponent sigil 3 data flags (T, U, V) 

Exponent flag Fraction sign 
Exponent (LO bits) 3 data flags 

Exponent sign (T, U, V) 
SINGLE 
LE NGTH 
OPERAND 

Left half accumulator register Right half accumulator register Sign b ~ t e  
reg ister 

I l  

L I 

I 

Fraction (48 bits) 
l 

F I G .  8.4. F L P  nccu~nulator forrnnt,~. Shaded areas are left undisturbed. 

* 

A special store instructioi~ is available to convert the low-order part of a 
double-1eiigt)h number in the accumulator to a proper FLP number in 
memory with correct exponent and sign. 

It should be noted that a word may have a nonsingular representation 
in the double-length accumulator, although the corresponding number in 
memory is singular (i.e., the low-order exponent has an exponent flag). 

i 

8.1 2. Singular F l ~ a t i n ~ - ~ o i n t  Numbers 

The range of numbers representable by the above format is indicated 
schematically in Fig. 8.5. Norma1 numbers ( I N )  are bounded by 
infinities (I  .r ) and iiifinitesimals ( i  e ) .  Not shown is the previously 
discussed order-of-magnitude zero (OMZ), which may result from sub- 
tracting numbers in the N range and may thiis have a true value any- 

DOUBLE 
Fraction (96 bits l  LENGTH 

OPERAND I 

I I 

I I 



where in this range. (An OMZ is different from the true zero, shown as 
the dividing line between positive a,nd negative numbers.) 

The representation of singular numbers in 
the 7030 is straightforward: 

Injinity ( 00 ). The exponent flag is set to 1, +I[-+2t1024 

and the exponent sign is positive. Hence this 
is also called an exponent JEag positive condiiion 4-N 

(XFP). 
Infinitesimal (E). The exponent flag is set to 

l ,  and the exponent sign is negative. Hence True 
this is also called an exponent JEag negative con-
dition (XFK). 

Zero fraction, or order-of-rnagnitude zero 
(OMZ). Al1 48 bits of the fraction (or al1 
96 bits for results of double-length operations 
in the accumulator) are 0. 

-03 

The rules for doing arithmetic with infin-
ities or infinitesimals as operands follow the FIG. 8.5. FLP number 
notion that an infinity is larger in magnitude range.  Representable 

than any normal number and an infinitesimal numbers N lie in unshaded 
areas.

is smaller in magnitude than any normal 
number. Al1 infinitesimals behave arithmetically like zeros, but an 
infinitesimal with a zero fraction (an XFN zero) is the closest to a true 
zero. The sign of a singular number is the fraction sign and is manipu-
lated like the sign of a normal number. 

Thus the rules for arithmetically combining a normal number N with an 
infinity or infinitesimal are evident from the definitions. For addition 
and subtraction these rules are 

For multiplication and division the usual rule of signs determines the 
fraction sign of the result, and the magnitude is given by 

Some of the operations on two singular numbers likewise follow from 
their definition : 

0 3 + 0 0 = 0 0  0 0 * 0 0 = 0 0  



Other operations have indeterminate results (since in the discrete num- 
ber system of a digital computer there is no satisfactory substitute for 
L7Hbpital's rule). It was thought important to propagate singularities 
through the course of calculation, and, of the two possibilities, infinity 
and infinitesimal, infinity was chosen arbitrarily because the programmer 
~ ~ o u l d  more alarming :consider it  

[The purist may argue that t8he results in (8.7) should have a zero fraction 
part as well as a positive flagged exponent, which would indicate that the 
number is both indeterminate and outside the normal range. This 
distinction may be programmed in the rare case when it is important.] 

In comparing infinities and infinitesimals, the inequality relations are 
self-evident,: 

+ m  > S N > + € > - t > - N > - m  (8.8) 

When infinities of like sign are compared, they are considered equal; 
similarly, infinitesimals of like sign are equal: 

[Definition (8.9) is consistent witjh some but not al1 of the rules (8.4) to 
(8.7). For example, E - E = e implies that infinitesimals are equal, but 
.o - m = m implies that infinities are different. This problem arises 
because no consistent logic applies when both operands are singular.] 

In the case of order-of-magnitude zero (OMZ), the operation takes its 
normal course. So long as only one operand is an OMZ, this gives a 
reasonable result. Since an OMZ represents a range of indeterminacy, 
multiplication or division by a legitimate number simply increases or 
decreases the size of the range of indeterminacy appropriately. Division 
by an OMZ is suppressed and, when it would occur, the zero divisor 
indicator is turned on. Addition of an OMZ to either a legitimate 
operand or another ObiIZ produces either a legitimate result or an OMZ, 
depending upon the relative magnitudes of the involved.q~iant~it~ies 
(However, comparison operations call equal al1 OMZs whose exponents 
differ by less than 48.) 

The single-length product of two OMZs raises a particularly difficult 
problem. We define 

The double-precision product of the two zero fractions was a 96-hit zero 
and correctly represented the result of the multiplication. ?Vhen the 



number is cut to single-precision length, however, 48 meaningful 0s are 
thrown away. 

In a sense the product has been "normalized" 48 places. This rnay 
be seen by considering that (E,O) rnay be approximately represented by 
(E,2-48), and Eq. (8.10) may be replaced, to within a small error, by 

After truncation the result will henceforth be indisthguishable within 
48 bits from (E1 + E2, 2-48), a number that is too large by a factor of 248. 

Thus (8.10) is the correct definition for the double-length product in 
the accumulator, whereas for storing in memory the correct answer 
should be (E1+ E2 - 48, 0). Since only the programmer can decide 
when to store a result, the exponent adjustment can only be made by 
programming. For this purpose a zero rnultiply indicator is turned on 
whenever multiplication results in a zero fraction. The programmer rnay 
then define any desired exponent adjustment or choose to ignore the 
condition. 

The zero problem in multiplication would perhaps not be so serious, 
were it not for the fact that OMZs are frequently successively squared, 
which can lead to an unrestricted growth of the exponent, creating a large 
indeterminacy that can wipe out legitimate numbers. 

For the square root we have automatically (E,O)>q = (E/2, O) if E is 
even, or [(E + 1)/2, O] if E is odd. To be compatible with the foregoing, 
the root should really be [(E/2) - 24, O] or [(E+ 1)/2 - 24, O]; other- 
wise squaring and square-rooting are not inverse procedures. In this 
case, however, the magnitude of the result is made too small. I t  loses its 
ability to grow without bound and hence most of its ability to damage the 
calculation. For this reason no indicator is set for the square root. 
(If an indication is desired, it rnay be obtained by setting the fraction 
sign negative on al1 OMZs and using the imaginary  root indicator.) 

As both computers and computations have increased in complexity, 
the amount of analysis per instruction written must decline; so automatic 
treatment of FLP singularities becomes more important. The absence 
of test instructions also leads to cleaner programs, making coding and 
debugging much easier. In some physical problems, not only zeros and 
infinitesimals but also OMZs are common: a steady-state condition rnay 
prevail with everything initially at  rest, and the difference equations used 
to move out in time are likely to create OMZs during the early part of 
the calculation. OMZs must either be handled by the system or circum- 
vented at  the cost of considerable extra analysis and programming. In 
the 7030 these are handled automatically and rnay die out during the 
course of the calculation, so that no special starting procedures are 
required. A different situation, in which the automatic handling of 



singular quantities is important, is that in which they are produced 
unexpectedly as intermediat'e quant,it'ies in a calculation, but have no 
effect on the result. The fact that such singularities may arise infre- 
quently, and may not even arise a t  all, does not obviate the necessitly for 
dealing with them when they do occur. 

8.13 .  Indicators 

The FLP indicators fa11 into three categories: (1)thoae which are set by 
both VFL and FLP operations and have analogous meanirig for both; 
(2) those which are set only by FLP operations; and (3) the noisy mode 
indicator. 

Indicators Common to V F L  and F L P  Operations 

The following indicators are shared by VFL and FLP operations: 

1. Arithmetic resd t  indicators. They show whether the result is less 
than zero, zero, or greater than zero, or whether the result sign is negative. 

2. Comparison indicators. They indicate after a comparison operation 
whether the accumulator operand was low, equal, or high relative t,o the 
memory operand. 

3. Lost carry and partial jield. These apply only to unnormalized 
operations because the conditions are otherwise taken care of by 
normalization. 

an attempt to divide by a zero fraction. 4. Zero divisor. It indi~at~es 
5 .  Data Jlag indicators. They signal flagged operands. 
6. To-memory operation. This indicator distinguishes between store 

and fetch operations, for easier exception programming. 

F L P  Indicators 

The indicators that are private to FLP operations are listed below : 

1. Esponent range indicators. These indicators signal that the result 
exponent E lies in a certain range; they are as follows: 

a. Exponent overflow. E 2 +21°. The exponent flag Ef is turned on. 
This indicator shows that  an overflow has been generated during the cur- 
rent operation. 

b. Exponent range high. + Z 9  5 E < +21°. 
C. Exponent range iow. +26 S E < +Z9.  
d. Exponent under$ow. E 4 -21°. Ef is turned on. This indicator 

shows that an underflow has been generated during the current operation. 
e. Exponent JEag positice. E 2 +21° and E f  was already on. This 

indicator shows that an overflow has been propagated; that is, the overflow 
was forced because the operand was an infinity. 



The exponent overjlow and exponent underjlow indicators signal that the 
number has already gone out of range. The exponent range high and 
exponent range Eow indicators may be used as a warning that numbers 
have entered a larger range than anticipated before the damage has been 
done, since the result is still a representable number. The last indicator 
warns that the operand was an inifinity, in case corrective action other 
than the built-in procedure is desired. A corresponding indicator for 
infinitesimals is not provided, since these are less likely to cause serious 
damage; if flagging is desired, the programmer could turn on a data flag 
after detecting the origina1 exponent underflow. 

2. Lost signiJicance. Adding or shifting nonsingular operands has 
resulted in a zero fraction, leaving no 'significant bits. 

3. Zero multiply. A multiplication has resulted in a zero fraction; 
so the result may not indicate the proper order of magnitude. 

4. Preparatory shift greater than  48. During addition the exponent 
difference is found to be greater than 48; so some or al1 of the bits of the 
number with the smaller exponent have been shifted off the right end of 
the double-length result and are lost. In a single-precision sense, the 
operands are incommensurate. 

5.  Imaginary  root. The operand for a square-root operation is 
negative. 

6. Remainder under8ow. Same as exponent underjlow, except that it 
applies to the remainder produced after a double-length division, whereas 
exponent underflow after division applies to the quotient. 

N o i s y  Mode Indicator 

This indicator, when on, causes al1 normalized FLP operations to be 
performed in the noisy mode, where 1s  replace 0s a t  the right. 

The noisy mode indicator is a programmed switch, which can be 
turned on and off only by the programmer. It is placed among the other 
indicators in order to simplify program interruption. When interruption 
occurs, the indicator register is stored in memory and subsequently 
reloaded. Thus the noisy mode and other indicators are restored to the 
same state they were in a t  the point of interruption. 

8.14. Universal Accumulator 

The principle of the universal accumulator, where the accumulator is 
the source of the major implied operand and the destination of the major 
result of every arithmetical operation, was stated already in Chap. 7. 
It deserves restating here because it is an important factor in reducing 
the housekeeping burden of floating-point calculations and increasing 
t heir speed. 



8.15. Fraction Arithmetic 

The distinction between integer and fraction arithmetic has already 
been discussed in Chap. 7, where reasons are given for choosing integer 
VFL arithmetic. Fraction arithmetic, on the other hand, was preferred 
for floating-point operations in the 7030. 

The fraction notation is a natura1 choice for numbers that approxi- 
mately represent continuously variable mathematical quantities to a 
given number of significant digits, the remaining low-order digits being 
discarded. This is especially so when the numbers are normalized for 
maximum precision. In  multiplication, for example, it  is desirable to 
have available either a single-length or a double-length product for single- 
or double-precision work. If fraction arithmet'ic is used, the high-order 
part of a normalized double-length product is the same as the correspond- 
ing (unrounded) single-length product. With integer arithmetic the 
two have different positions and exponents, which makes this convention 
a little more awkward, although one can readily formulate a consistent set 
of rules for integer FLP arithmetic. In most respects the practical dif- 
ferente between fraction and integer FLP niimbers is just a matter of 
changing al1 exponents by an additive constant. 

The FLP operations may be placed in three categories: (l) single-
length operations (which produce a result with a 48-bit fraction), (2) 
double-length operations (which produce a 96-bit fraction), and (3) 
special operations. 

Internally, operations are actually performed in double-length form. 
Thus the parallel adder for the fractions is 96 bits long, and 48-bit 
operand fractions are extended with 0s (or l s in single-length noisy mode) 
after shifting, to make up 96 bits a t  the input of the adder. A fu11 
96-bit result is produced. The difference between single- and double- 
length operations is primarily whether the fraction part of the accumula- 
tor operand is taken to be 48 or 96 bits long and whether the result in the 
accumulator, after normalization if specified, is truncated to 48 bits or not. 

The fraction arithmetic takes place in 96-bit registers which are dif- 
ferent from the accumulator registers. Thus it  becomes possible, in 
single-length operations, to leave unmolested al1 bits to the right of the 
48th fraction bit in the accumulator, even though intermediate results 
may require more than 48 bits of register space. 

Since the bulk of the compiiting was expected to be in single precision, 
the design of the arithmetic unit was biased in favor of performing single- 
length operations a t  high speed, sometimes a t  the sacrifice of speed for 
double-length operations. Thus no time is taken to preserve the rarely 



needed remainder in single-length DIVIDE, even though this remainder is 
obviously generated, leaving the dressing up and storing of the remainder 
in the remainder register to DIVIDE DOUBLE. 

Many of the basic FLP operations are analogous to the VFL operations 
of the same name (Chap. 7): 

LOAD 

LOAD WITH FLAG 

STORE 

STORE ROUNDED 

ADD 

ADD T 0  MAGNITUDE 

ADD T 0  MEMORY 

ADD MAGNITUDE T 0  MEMORY 

COMPARE 

COMPARE FOR RANGE 

MULTIPLY 

LOAD FACTOR 

MULTIPLY AND ADD 

DIVIDE (except that no remainder is kept in FLP) 

The nature of these operations is indicated by their names and follows 
from what has been said in previous sections. A summary of al1 opera- 
tions is given in the Appendix. If more detail is desired, the reader is 
referred to the 7030 Reference Manual. A few comments will be made 
here on certain specific features that will be important in subsequent 
discussion. 

STORE ROUNDED provides a means of storing a rounded single-precision 
number in memory while leaving the original, unrounded, double-pre- 
cision number in the accumulator for any further calculation. There is 
no automatic rounding in any other operation. Rounding is performed 
only when and where desired. Rounding is done by adding a 1 to the 
49th fraction bit of the absolute value of the accumulator operand; 
rounding is followed by normalization, if specified, and storing of the 
high-order 48 bits. 

The unnormalized add operations are interpreted to mean that there is 
no normalizing right or left shift after the addition. Consequently, 
any carry out of the high-order position of the fraction is lost, and the 
tost carry indicator is turned on. This feature is important in pseudo 
fixed-point arithmetic. There is no lost carry in normalized addition, of 
course; a right shift with exponent adjustment takes care of the matter. 

MULTIPLY ASD ADD is designed for cumulative multiplication. The 
product of the memory operand and of the operand in the factor register 
(previously loaded with a LOAD FACTOR instruction) is formed and then 



added to the accumulator contents. The sum is a double-precision 
number. Thus in important calculat~ions-like forming the inner product 
LAiB;, which can be done with a three-instruction loop-the double-
precision sum avoids round-off error unti1 a single STORE ROUNDED is 
given a t  the end. MULTIPLY AND ADD is the only double-length operation 
in the above list of basic operations; al1 others are single-length. 

S o t  shown in the above list are two instructions, COMPARE MAGXIT'U'DE 

and COMPARE MAGNITUDE FOR RANGE, which correspond to the VFL 
operations COMPARE FIELD (FOR RANGE) in that the accumulator sign is 
ignored in the comparison ; the difference in nomenclat ure arose because 
the VFL operations may include only a partial accumulator field, whereas 
the FLP operations always dea1 with the entire operand. 

Two other single-length operations occur only in the FLP repertoire, 
since they did not seem so important for VFL use. One is RECIPROCAL 

DIVIDE, which is the same as DIVIDE but with dividend and divisor inter- 
changed ; the other is STORE ROOT, which extracts the square root of the 
accumulator operand and stores it in memory. 

The double-length operations (\ve intentionally avoid the term double- 
precision because only the accumulator operand is really of double pre- 
cision, the memory operand necessarily being of single precision, and so 
the operations are a t  best of "one and a half precision") include the 
following variations of the single-length operations: 

LOAD DOUBLE 

LOAD DOUBLE WITH FLAG 

ADD DOUBLE 

ADD DOUBLE T 0  MAGNITUDE 

MULTIPLY DOUBLE 

DIVIDE DOUBLE 

STORE LOW ORDER 

The double load operations reset al1 96 fraction bit positions in the 
accumulator to O before loading the single-length memory operand, 
whereas the single load operations affect only t'he high-order 48 fraction 
positions. The double add operations combine a single-length memory 
operand with a double-length accumulator operand and return a double- 
length result to the accumulator. To store a double-length accumulator 
operand in memory, i t  is necessary to create a pair of single-length 
operands; this is done by using STORE, for the high-order part, and STORE 

LOW ORDER, which attaches the eorrect exponent (E - 48) and the sign to 
the low-order part to form a proper FLP nurrìber. iL'ormalization may 
be specified if desired. Loading a double-precision number pair may be 
accomplished by LOAD DOUBLE followed by ADD DOUBLE, specifying the 
operand in either order since the exponents take care of themselves. 

Multiplica,tion, whethes single or double, operates only on single-



length factors from memory and from the accumulator. MULTIPLY and 
MULTIPLY DOUBLE differ in whether a single-length or double-length 
product is returned to the accumulator. 

As might be expected, division is the most complex of the FLP opera-
tions to implement, because there are many exceptional conditions to be 
considered if they are not to be a burden on the programmer. The 
principles followed were that (1) no scaling should be required in advance, 
and (2) the quotient should be developed with maximum precision. 
We must distinguish here between normalized and unnormalized division. 

In normalized division the first step is to normalize both the dividend 
and the divisor. The quotient is then developed. Since it is still possible 
for the normalized dividend fraction to be greater than the normalized 
divisor fraction, the quotient may have ai1 overflow bit and require a 
single right shift for normalization; otherwise the quotient will be already 
normalized. 

Even for unnormalized division the divisor is fully normalized, so as to 
guarantee the greatest quotient precision. The dividend, however, is 
normalized only to the extent that the amount of the left shift does not 
exceed the left shift of the divisor. If the dividend has as many or more 
leading zeros than the divisor, both will have been shifted by the same 
amount; the difference between dividend and divisor exponents is then 
still the correct quotient exponent, but the quotient fraction may have 
leading zeros as in any other unnormalized operation. If the dividend 
has fewer leading zeros than the divisor, it cannot be shifted so far. In 
the fixed-point sense the division is illegitimate, since the quotient will 
overflow (which also happens when the number of leading zeros in the 
dividend and the divisor are the same and the dividend fraction is equa1 
to or greater than the divisor fraction). So as not to require the program- 
mer to test and scale his numbers beforehand to avoid this situation, the 
division is carried out and the scale factor is made available for adjust- 
ments only if and when overflow occurs. The procedure is as follows. 

The dividend is normalized either as far as it will go or as far as the 
divisor, whichever requires the lesser amount of shift. Division then 
proceeds as in the normalized operation, and the quotient exponent is 
adjusted for the amount of shift that occurred. The difference between 
the amount of left shift of the divisor and the left shift of the dividend is 
entered into a counter, the left-zeros counter, which is conveniently 
available for this purpose; to this a 1 is added if the quotient had to be 
shifted right once to remove the overflow. If the fina1 counter setting in 
unnormalized division is greater than zero, the partial jield indicator is 
turned on as a signal. The counter contains tthe proper scale factor. 
If the left-zeros counter contents are zero, the dividend was shifted as 
far as the divisor, the quotient did not overflow, and no scaling is required. 
(The counter contents cannot be negative.) 



DIVIDE DOUBLE differs from DIVIDE in severa1 respects. A double-
length dividend in the accumulator is used. A correct 48-bit remainder 
corresponding to a 48-bit quotient is produced and deposited in a separate 
remainder register (whereas DIVIDE produces no remainder). The 
quotient is left in the accumulator; it is a 48-bit number in DIVIDE, but a 
49-bit number in DIVIDE DOUBLE. The 49tfh quotient bit is intended 
to be used with STORE ROUNDED to obtain a rounded 48-bit quot'ient in 
memory, but it does not affect the magnitude of the remainder. Thus 
the remainder has the correct value for programming extended precision. 
(Strictly speaking, the remainder also has 49 bits when the normalized 
dividend fraction equals or exceeds the normalized divisor fraction. 
Only the high-order 48 remainder bits are preserved. If a low-order l is 
thus dropped in unnormalized division, the lost carry indicator is turned 
on, so that a correction may be programmed when desired.) 

Four special operations on the accumulator operand, which alter the 
fraction or exponent part independently except for possible normaliza- 
tion after an addition, complete the FLP set: 

ADD T 0  FRACTIOS 

SHIBT FRACTION 

ADD E X P O S E S T  

-4DD IMMEDIATE T 0  EXPOXENT 

The question naturally arises why these special operations are provided 
in the FLP set if the same functions could be performed by VFL instruc-
tions. An important reason is that FLP instructions are fast'er and tJake 
up only a half word each. More decisive is the fact that VFL operations 
would not set the special FLP indicators. 

8.17. Fixed-point Arithmetic Using Unnormalized 
Floating-point Operations 

As has been mentioned before, t8here are two ways of performing binary 
fixed-point arithmetic in the 7030. One way, which is fast but relatively 
wasteful of storage, is to use unnormalized FLP operations. The other 
way is to perform binary VFL operations; this uses storage efficiently but 
is slower. 

With unnormalized FLP arithmetic a fixed-point fraction f is ordinarily 
represented by the FLP number (0,f). I t  is clear from definitions (8.1) 
to (8.3) that addition, subtraction, and rnultiplication of such numbers 
result in numbers of the same kind, so long as the fraction has enough bits 
to avoid overflow. Division produces such numbers only if the divisor 
fraction is greater in magnitude than the dividend fraction. Otherwise, 
the quotient is (lc,f), where lc > 0; this is a correct quotient, but it is no 



longer of the pseudo fixed-point form (0,f). As discussed earlier, the 
quantity k is available in the left-zeros counter for use by the program in 
scaling results after the partial Jield indicator signals the condition. 

Treatment of singularities is indicated by Eqs. (8.4) to (8.7). It 
should be noted that multiplication and divisi011 of singular quantities, 
as executed automatically in the 7030, are not always inverse operations. 

8.1 8. Special Functions and Forms of Arithmetic 

In planning the FLP instruction set, consideration was given to the 
implementation of severa1 common functions other than the basic arith- 
metical operations, such as logarithmic and trigonometric functions, 
complex-number arithmetic, polynomial evaluation, and the vector 
inner product. It was found that the high degree of concurrent opera- 
tion within the CPU reduced the time spent on housekeeping instructions 
so much that built-in macro-instructions would not be appreciably faster 
than programmed macro-instructions, and they would be much less 
flexible. 

The square-root function is an exception. It was built in because it  
could be carried out economically by an algorithm quite similar to the 
division algorithm chosen. 

8.19. Multiple-precision Arithmetic 

Built-in double-precision operations were among the special forms of 
FLP arithmetic that were considered but rejected because of insufficient 
speed advantage. A second reason for not providing such operations 
directly was the greater fraction length of the 7030, which would minimize 
the need for double-precision arithmetic. (Double-precision accuracy on 
the 7030 is more than 3.5 times single-precision accuracy on the 704.) 

When the occasion for extending precision arises, furthermore, double 
precision is not necessarily sufficient; so triple- or higher-precision pro- 
grams would have to be written anyway. The step from double to triple 
or quadruple precision will be as important as the step from single to 
double, and there is little justification for favoring the latter to the 
detriment of the former. Accordingly, the objective in the 7030 was to 
facilitate the programming of any multiple-precision arithmetic. The 
facilities provided include the double-length accumulator, appropriately 
defined unnormalized instructions, and exception indicators. 

Tables 8.1 and 8.2 illustrate programs for double-precision addition 
and multiplication, respectively. These examples assume that a double- 
precision operand A is in a pseudo accumulator a t  memory addresses 
200.0 (high-order part) and 201.0 (low-order part). The second operand 
B is at  memory addresses 202.0 and 203.0. The result is to be returned 
to the pseudo accumulator. 

The addition program illustrated takes six instructions, and the 



TABLE 8.1. DOUBLE-PRECISION ADDITION 
Form C = A + B = a~ + aL + bH + b~ where the subscripts H and L indicate 

high-order and low-order parts of each double-precision number. 

Location Statement 

LOAD DOUBLE (FU), 2 0 1 . 0  
ADD DOUBLE (m), 203.0 
ADD DOUBLE (FN), 200.0 
-4DD DOUBLE (FN), 202.0 
STORE (FU), 200.0 
STORE LOW ORDER (FU), 201.0 

DATA, AH 

DATA, AL 

DATA, BH 

DATA, BL 

Notes 

) ~ s e u d o  accumulator 

Notes: ( l )  Add low-order parts. 
( 2 )  Add high-order parts last for greatest precision. 
(3 )  Result in pseudo accumulator. 
(FU) : unnormalized floating-point. 
(m) : normalized floating-point. 
100.32: bit 32 of word 100, that is, the right half mord. 

TABLE 8.2. DOUBLE-PRECISION MULTIPLICATION 
Form C = A * B = aHbH + a d H  + aHbL (appro~im~tely) .  (Omitting the 
product term a ~ b ~  may cause an error of P6 in the fraction magnitude.) 

Location Statement 

LOAD (FU), 2 0 0 . 0  
MULTIPLY DOUBLE (FU), 203.0 
LOAD FACTOR (FU), 202.0 
MULTIPLY AND ADD (FN), 201.0 
M-ULTIPLY AND ADD (FN), 200.0 
STORE (FU), 200.0 
BTORE LOW ORDER (FU), 201.0 

DATA, AH 
DATA, AL 
DATA, BH 

DATA, BL 

Notes 

} Pseudo accumulator 

Notes: ( l )  Form U H ~ L .  
( 2 )  Add a ~ b ~ .  
(3 )  Add high-order term a ~ b ~  iast. 



multiplication program takes seven. For double-precision addition only, 
i t  is possible to hold the implied operand in the rea1 accumulator, and no 
more than two ADD DOUBLE instructions are needed in that case. This 
compares with a t  least twelve and sixteen instructions, respectively, 
needed for double-precision FLP addition and multiplication in the IBM 
704, which has no special facilities for multiple precision. The IBM 704 
figures are a minimum; they allow for testing only once for accumulator 
overflow and quotient overflow. A practical 704 program may require 
more instructions for additional tests and sign adjustments, the actual 
number being a matter of individua1 needs. The length and intricacy 
of double-precision programming for the 704 make i t  advisable to use 
subroutines; whereas the 7030 programs are short enough to justify 
either writing the few instructions needed into the main program or using 
macro-instructions to compile them. The net result is a substantial 
reduction in the ratio of execution times for double- and single-precision 
arithmetic. 

Triple- and higher-precision arithmetic is more complex for both 
machines, but the 7030 facilities again provide an advantage. 

8.20. General Remarks 

The key problems in planning and implementing a normalized floating- 
point instruction set in a digital computer involve, first of all, attaining 
the highest performance consistent with the required precision and range, 
and, second, a really adequate instruction set. By its very nature, the 
FLP instruction set is highly specialized and will always be incomplete. 
For this reason the accent must be o11 very high performance for special- 
ized operations. Insofar as completeness and generality of the FLP 
instruction set have any meaning a t  all, i t  is in the facilities for the impor- 
tant FLP "arithmetics" and representations and for conversion among 
them. Symmetry of the instruction set is important, both because the 
instructions added for symmetry are likely to be important on their own 
and because syrnmetry simplifies the programming system. 

The goal of highest possible performance must also be viewed in the 
context of the total operating system within which the computer proper 
is to perform: the automatic programming system, the programmers, 
the operators, and al1 the rules that they must follow. The goal is 
maximum total throughput, rather than maximum performance on any 
particular operation or set of operations. Kevertheless, it is obvious 
that the total throughput of a large-scale scientific computer will not be 
very high unless it possesses a fast, powerful FLP instruction set that 
performs very well al1 those operations which we know must be performed 
well by such an installation and performs adequately those operations 
which are only sometimes important. 



Chapter 9 

INSTRUCTION FORMATS 
by W. Buchholz 

9.1. Introduction 

The importance of devising a good instruction set for a stored-program 
computer has been recognized by computer designers from the beginning. 
Most designers lavish a great dea1 of care on this aspect of their job, and 
so the instruction set contains the most easily distinguishable character- 
istics of a computer. It is not surprising, therefore, that different schools 
of thought have existed as to the best format for instructions. An 
especially popular subject for debate-more in private than in print- 
used to be whether it was easier to program with single-address or multi- 
ple-address instructions. By now this question has become rather 
academic. The importance of machine language programming is decreas- 
ing rapidly with the advent of problem-oriented programming languages. 
More attention is now focused on efficiency in the compiling of programs 
and on speed in running the finished product. 

This is just one of severa1 changes in environment which have resulted 
in a trend, over the years, away from the simple instruction formats of 
early computers. It may be instructive to illustrate the trend by some 
examples before considering the choice of formats for the 7030. 

9.2. Earlier Instruction Languages 

The instruction formats of some earlier computers are reviewed in 
Fig. 9.1. 

The MIT Whirlwind computer represented the simplest of single-
address instruction formats. I t  specified the operat>ion and the address of 
one of the operands. The other operand was implied to be in a working 
register. 

Note: Chapter 9 is an updated version of an earlier paper: VST. Buchholz, Selection 
of an Instruction Language, Proc. Western Joint Computer Conf., May, 1958, pp. 128- 
130. 
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The UNIVAC 1103 scientific computer, made by Remington Rand, 
uses a two-address scheme where two operands may be specified. The 
result may be returned to one of the two addresses. 

The IBM 650 employs a different two-address scheme. Only one 
address specifies an operand, the other operand residing in an implied 
working register. The second address specifies the next instruction. 
This technique is advantageous in association with a revolving storage 
device, for it permits instructions to be located so that access time is 
minimized. 

Whirlwind r Op. Address j16 bits 

l 
From, to From 

t 

650 Operation Address D ' Address I 11decima1 digits 
2dd 4ddL 


From Next. 

Operationt
SEAC Address a Address 6 Address etc. ,44 bits 

12 12 12 

From From To 

FIG.9.1. Some classica1 instruction formats with one, two, and three addresses. 

The Kational Bureau of Standards SEAC computer had available two 
instruction formats, one with three addresses and another with four. 
The three-address format is shown. Two operands and a result could be 
specified. 

In  retrospect one wonders whether, in each choice, fitting instruction 
words to a desired data-word length was not just as strong a factor as the 
intrinsic merit of the instruction format which gave rise to so much dis- 
cussion. The distinction is mainly in whether one chooses to write 
related pieces of information vertically on a sheet of paper or horizontally. 
There was remarkably little difference among most of the early computers 
with respect to the operations that they performed. 

In the early computers, simplicity was an important engineering con- 
sideration. After all, no one was quite sure in those days that the com- 
plex electronie devices parading under the imposing name of large-scale 
electronic data-processing machines would actually work. 



------------- 

The computers, however, turned out to be really usable and productive. 
They provided valuable experience for the designers of later computers. 
They clearly showed a need for much higher speed and much larger 
storage. At t3he same time, it became evident that speed could be gained 
and storage space saved by providing more built-in operations. A 
larger vocabulary can mean a quite drastic reduction in the number of 
instructions written and executec! to do a given job. Floating-point 
arithmetic and automatic address m~dificat~ion, or indexing, are two 
features that have become standard equipment on scientific computers. 
Alphabetic representation and variable field lengt'h have similarly become 
accepted as built-in functions for business data processors. The instruc- 
tion set has been growing steadily in size and complexity. 

The desire to specify more things with one instruction has left no room 
in most instructions for more than one major address. The debate over 
multiple addresses has thus been settled by a process of evolution. 

9.3. Evolution of the Single-address Instruction 

The illustrations for this evolutionary process will be taken from 
experience gathered at  IBM over a number of years. The experience is 
not unique, and similar examples could be chosen from other designs. 

f Data length (half o.; full word) Left or right half word f 
l 


Another instruction (36 bits 

--- ------L8J--e 


FIG.9.2. Instruction format for IBM 701. 

Operation code Index Address 36 bitsaddress 
12 3 15 


FIG.9.3. Typical instruction format for IBM 704, 709, and 7090. 

The IBM 70 1 followed the simple single-address pattern (Fig. 9.2). 
To make efficient use of the word length selected for data representation, 
two instructions are packed in each word. 

The 704 and, later, the 709 and 7090 are al1 direct descendants of the 
701, but they have a much bigger repertoire of instructions and features. 
As a result, the instruction has grown to fill the entire word (Fig. 9.3). 

Bigger computing problems were found to require much larger mem- 
orie~. The address part of the instruction, therefore, was increased from 
11 to 15 bits, giving sixteen times the capacity of the 701 memory. 
Three bits were added to specify indexing. The port'ion of the instruc- 
tion that specifies the operation was increased from 5 to about 12 bits. 



Part of this increase was needed because severa1 times as many opera- 
tions were made available to the user. Some bits were added to govern 
the interpretation of other bits, thus permitting more than one instruc- 
tion format. For instance, there is a format in which two 15-bit quan- 
tities can be specified to provide a lirnited two-address repertoire in the 
704. 

For Project Stretch the evolution was carried a step further. More 
functions and more addressing capacity were desired. For other reasons, 
a much greater basic word length was chosen: 64 bits, or almost twice 
that of the 704. On the other hand, it  became clear that extra memory 
accesses resulting from inefficient use of instruction bits would sig- 
nificantly reduce performance; so the more frequent instructions were 
compressed into a 32-bit format, which is short'er than the 704 instruction 
format. Since it was decided not to impose the restriction of compati- 
bility with earlier machines, the 7030 instruction set could be made much 
more systematic and also more efficient than that of its predecessors. 

9.4. Implied Addresses 
We have already seen that single-address instructions differ from 

multiple-address instructions not in the number of operands required for 
a given operation but in that orily one of the operands is located a t  an 
explicitly specified address, any other operands being located a t  implied 
addresses. A single-address add instruction, for instance, may have one 
implied operand in the accumulator, to which an explicitly specified 
operand is added. The sum replaces either the implied operand or the 
specified operand. Of the three addresses required by the operation, 
only one is stated explicitly. This gain in efficiency is nullified when add 
is preceded by Eoad and followed by store. Therefore, implied addresses 
provide a gain in instructon-bit efficiency only when repeated reference 
is made to the same implied operand. In arithmetical operations 
repeated reference to the same implied operand occurs sufficiently often 
to justify the single-address instruction format. 

As will be seen in the following section, the instruction formats for the 
7030 still follow primarily the single-address pattern with an implied 
accumulator operand, but each format has one or more secondary 
addresses, such as index addresses. Some less frequently used instruc- 
tions have two complete addresses, each accompanied by its own index 
address; and these do not require the accumulator. 

I t  may be noted here that an accumulator may be designed to hold 
more than one implied operand. An interesting version of a multiple- 
operand accumulator has been called a nesting store by its originators,l or 

G. M. Davis, The English Electric KDF 9 Computer System, The Computer 
Bullefin, vol. 4, no. 3, pp. 119-120, December, 1960. 



more descriptively a push-down accumulator. I t  rnay be pictured as a 
(theoretically infinite) stack of operands, with the most current operand 
on top. If a new operand is loaded a t  the top, the remaining ones are 
pushed down. If the t'opmost operand is removed and stored in main 
memory, al1 others below it are pushed up automatically. By avoiding 
instructions for transferring intermediate results to and from temporary 
storage locations, t'nis scheme rnay show a gain in effciency when s 
calculation can be arranged so that the order of using operands is: last in, 
first out (or any other prespecified rule of accession). The push-down 
scheme appeared too late to be evaluated for its effectiveness in the 7030. 

9.5. Basic 7030 Instruction Formats 

The basic pattern of instruction formats is shown in Fig. 9.4. A 
simple half-word format (Fig. 9 . 4 ~ )  consists of an address, an index address 
1 to specify the index register to be used for automatic address modifica- 
tion, and a code O P  that defines the operation to be executed. The 4-bit 
I address specifies either one of Jifteen index registers (1 to 15) for address 
modification, or no address modification (0). 

A second index address, J, is added to the format for index arithmetic to 
designate the index register on which the operation is to be performed 
(Fig. 9.4b). The 4-bit J address rnay specify one of sixteen index regis- 
ters (O to 15)) including m e  register (0) that cannot participate in auto- 
matic address modification. 

A full-word instruction consists essentially of two half-word formats, 
each half having an address, a modifier index address I, and an operation 
code OP. The operation code in the left half is merely a unique code to 
distinguish it from al1 the half-word instructions and to ensure proper 
interpretat'ion of the right half. Full-word instructions rnay occupy a fu11 
memory word ; or they rnay overlap the memory-word boundary, the left 
half being in one memory word and the right half in the next higher 
word. Thus full-word and half-word instructions rnay be freely 
intermixed. 

A good example of a full-word instruction (Fig. 9 .4~)  is TRANSMIT, 

which rnay be used to transmit a word (or a block of words) from the 
memory area starting a t  the address in the left half of the instruction to 
the memory area starting a t  the address in the right half. Another 
instruction, SWAP, interchanges the contents of the two memory areas. 
Input-output transmission instructions use a similar format, except that 
the left address gives the number of an input-output channel, and the 
right address is used in an indirect fashion, specifying a contro1 word 
which in turn defines the memory area (see Chap. 12). 

The fourth example (Fig. 9.4d) is the format of the variable-field- 
length (VFL) operations. The left half contains a memory address, biit 



the corresponding part of the right half is occupied by additional speci- 
fications. P is a modifier to indicate different kinds of address manipu- 
lation, including progressive indexing (Chap. 11). Length and byte sixe 
(BS) further define the operand in memory (Chap. 7). The second 
operand is implied to be in the accumulator; separate specifications are 
not essential, but an offset is provided as a partial address of the second 
operand for greater flexibility. I t  designates the starting position within 
the accumulator, thus avoiding extra shift instructions to line up the 
operands. The I address in the right half is there primarily for consist- 

Address Op. code 
18 I 4  

(a) Floating point arithrnetic 

Address J Op.
19 4 I4 

(b )  Direct index arithmetic 

Address O P  .Addrèss Op. code 
24 I 4  19 I4 

(C) Input-output operations and data transrnission 

I 

Address 
24 

Op.  I 
4 

P 
3 

Length 
6 

BS 
3 

Offset 
7 

Op. code I 
4 

(d) Variable field length operations 

1 ? 

Value .f Count Refill 
24 ,l 18 18 

(e)' I ndex word 

FIG.9.4. Basic instruction formats for IBM 7030. The index-word format (e) is 
shown for comparison. 

ency with other formats; automatic modification of the bits in fields 
length, BS, and o$set, as if they were an address, is possible and occasion- 
ally useful. 

A complete list of instruction formats is given in the Appendix. 

9.6. Instruction Efficiency 

It was pointed out in Chap. 4 that different natura1 data units require 
different amounts of specification. The most complex data unit, the 
floating-point number, has a rigid format. Its specification is built 
into the arithmetic circuits for greatest speed. There is relatively little 
left for the instruction to specify: an address, an index register, and an 
operation. Hence a simple instruction format suffices (Fig. 9.4~). 



The most complex instruction format (Fig. 9.4d) is provided to operate 
on variable-field-length data, which are tlhe most flexible data units. 
VFL data are, to the computer circuits, a mere collection of bits unti1 
their structure is specified in the instruction. The intent here is to give 
the programmer a very versatile t001 with which, despite relatively low 
speed, certain important tasks can be performed more expeditiously 
than they could be with faster but more restricted operations. 

It is obvious from information theory that instructions of varying 
information content can be expressed by a varying number of bits. It is 
not so obvious that the saving in memory space for programs, which results 
from having multiple instruction formats, would alone pay for the addi- 
tional equipment cost of decoding these formats. What really prompted 
the introduction of multiple instruction formats was the observation that 
the speed of the 7030 was in danger of becoming severely limited by the 
time taken to fetch instructions from memory during the execution of the 
all-important inner loops of arithmetical programs. At that point in the 
design, it  was found that almost al1 the instructions usually needed in 
t'he inner loops (floating-point arithmetic, indexing, and branching) could 
be expressed in terms of 32-bit half words and that, if they were so 
expressed, the number of accesses to memory for instructions could be cut 
almost in half. 

Completely variable instruction lengths, though desirable in theory, 
are not practical. Either instructions would have to be scanned serially, 
which would be slow, or they would have to be passed through a complex 
parallel switching network with cumulative circuit delays, which would 
again slow down the computer. In practice, with binary addressing, 
instruction lengths must be kept to binary submultiples of the memory- 
word length. Half-length, quarter-length, and even eighth-length 
instruction vocabularies were actually tried. It mas found that, although 
short instructions saved space, the saving could be quickly eaten up by 
the extra bits needed to define each format. The greatest economy of 
memory space and memory references was gained in a mixture of half- 
length and full-length instructions. 

The 32 bits are rather tight for some of the short instructions. Since 
it  was not possible to add a bit or two to an instruction mhen needed, it  
was necessary to vary the length of fields within the 32-bit space in order 
to provide al1 the functions that were thought desirable. These measures 
resulted in multiple 32-bit formats, which required additlional decoding 
equipment as well as certain compromises. 

Some of the additional formats are shown in Fig. 9.5. It will be seen 
that a 4-bit I address for indexing is not available in al1 formats. In 
particular, the conditional branching operations have only a l-bit I 
address, permitting choice between no indexing and indexing against a 
single index register. It  was felt that fu11 indexing facilities, though 



desirable, were less important than, for example, being able to specify 
any of the 64 indicators as a test for indicator branching (Fig. 9.5b). 
The unconditional branching operations, however, have a complete 
index address, so that indexed branch tables may be readily constructed. 
Immediate indexing operations have no I address a t  all, since there 
seemed to be little use for automatic address modification when the 
address was itself the operand. 

Address Op. code 
19 I4 


(a) Unconditional branching and miscellaneous operations 

Address Indic- I 
ator 6i9 


(b)  Indicator branching 

Address J Op. code I 
19 4 l 

(C) Counting and branching 

Address J Op. code 
19 4 

(d) Immediate indexing 

Address OP. Any half word branch instruction 
24 I4 

(e) Storing instruction counter before branching 

Address OP. I Address Op. code I 
24 4 19 1 

(f) Bi t  testing and branching 

FIG.9.5. Other 7030 instruction formats. 

Operand addresses also vary in length for different formats. 18-, 
19-, and 24-bit addresses are used depending on whether addressjng is 
to be carried to the word, half-word, or bit level. The index-word 
format, shown in Fig. 9.4e for comparison with the instruction formats, 
has a fu11 24-bit value field as well as a sign; no sign bit could be provided 
in any of the instruction formats. To simplify indexing, al1 addresses line 
up against the left boundary of the word (or half word) in such a manner 
that the significant bits fa11 into corresponding positions in every format. 
Missing bits, including a O (+) sign bit, are automatically supplied to 
the right as the instruction is decoded, so that indexing always results in 
an effective address 24 bits long (Fig. 9.6). 



The operation codes of different classes of instructions, especially half- 
length instructions, differ in length, position within the format, and 
variability. There are 76 distinct operation codes among the half-length 
instructions; a t  least 7 bits are required to specify them. Up to 8 more 
bits are used as modifiers common to al1 operations in the same class, so 
as to make the set as systematic as possible. For example, al1 arithmetical 
instructions have a n~obifier bit to indicate whether the operand sign is tu 
be inverted, which eliminates the need for separate add and subtract codes. 
Thus adding 7 operation bits and 8modifier bits to the 19address bits and 
4 index-address bits required by many instructions gives a total of a t  least 
38 bits that would have been needed to encode these operations in a simple 
and straightforward manner. By eliminating redundancy, it  was possible 

Bit 
Word address address (Sign -

r i-

xxx xxx xxx xxx xxx xxx O00 O00 O 18-bit address 

xxx xxx xxx xxx xxx xxx x00 O00 O 19-bit address 

xxx xxx xxx xxx xxx xxx xxx xxx O 24-bi t address 

xxx xxx xxx xxx xxx xxx xxx xxx x Index address 

x Indicates a bit which may be O or 1 

FIG.9.6. Expansion of addresses of various lengths. 

to compress the format to 32 bits. The only functional sacrifice was 
the reduced index address in some of the branching operations, as noted 
before. 

An analysis of the operation codes shuws that only 0.05 bit of informa- 
tion is left unused in the 32-bit f0rmats.l The 0.05 bit actually repre- 
sents, a t  the time of writing, unallocated space in the formats for three 
more Aoating-point operations with their modifiers and nine more miscel- 
laneous operations, each with a fu11 4-bit I address, which is not a trivial 
amount of space. The full-word formats are not so closely packed. The 
64 bits are found to contain almost 6 bits of redundancy. 

Yet another technique for increasing instruction efficiency is to use 
extra half words to define important but less frequently needed functions. 
This arrangement raises the instruction information content, because it  
uses one out of many operation codes, instead of tying up 1 bit in every 
instruction. Also, the efficiency with which a program can be stated is 
improved, since the infrequent use of an extra instruction is easily offset 
by the greater information content of each frequent instruction, whereas 
omitting the instruction entirely from the repertoire would require use of 
a subroutine each time the need arose. 

l This assumes that al1 d e h e d  combinations are equally probable and al1 18 bits 
of memory address are fully justified from the start to permit future expansion in a 
clean way. 



As an example, indirect addressing is a powerful t001 when needed, 
but its use is not very common; hence a separate half-word instruction is 
used as a kind of prefix for the instruction to which indirect addressing is 
to be applied (see Chap. 11for more details). Figure 9.5e shows another 
example. A half-word prefix is attached directly to any half-word 
branching instruction, to make what is actually a complete set of full- 
length branching instructions ; these permit the current set ting of the 
instruction counter to be stored anywhere in memory before the instruc- 
tion counter is changed to its new setting. The significance of making 
this a single full-length instruction is that, for conditional branching, 
the instruction counter setting is stored only when the branching actually 
takes place, thus saving valuable time. A fina1 example is the very 
flexible full-length bit-testing instruction (Fig. 9.5f). This allows any 
addressable bit in memory or in the computer registers to be tested and 
set, and branching occurs if the test is satisfied. A more limited test of 
only the indicator bits (such as zero and overfloa- indications) satisfies 
the most frequent demands for testing, and the half-length indicator 
branching operation of Fig. 9.5b was provided for this reason, even though 
it is logically redundant. 

These rather elaborate measures to increase instruction efficiency do 
not come cheaply in terms of decoding equipment and 'program-compil- 
ing time, but they do help materially to shorten the program-running 
time. Compared with the 704, for instance, the typical instruction length 
has gone down from 36 to 32 bits, and the power of the instruction has 
been increased. As a rule, the number of 7030 instruction half words to 
be executed is substantially less than the number of 704 instruction words 
for an equivalent program. This gain, of course, is to be added to the 
large gain in speed of corresponding individua1 instructions. 

9.7. The Simplicity of Complexity 

One may ask whether a more complex instruction set does not lead to 
more difficult programming. One answer is that programming can be 
simplified by adding instructions to complet,e a set (branch on plus, as 
well as branch on minus) and arranging them systematically. Another 
answer can be obtained by looking a t  the other extreme. 

Van der Poel has shownl that the simplest instruction set the~ret~ically 
consists of just one instruction. This instruction contains no operation 
code, only an address. Every instruction causes a combination of sub- 
tract and sture to be executed; the difference replaces the contents of both 

l W. L. van der Poel, The Essential Types of Operations in an Automatic Computer, 
-Tachrichtentechn.ische Fachberichte, vol. 4, 1956, p. 144 (proceedings of a conference 
on Electronic Digital Computing and Information Processing held a t  Darmstadt, 
Germany, October, 1955); also, "The Logica1 Principles of Some Simple Computers," 
a monograph by the same author, Excelsior, The Hague, Xetherlands, p. 100. 



the accumulator and the specified memory address. Al1 other computing 
operations, including conditional branching, can be built up from this one 
instruction, which is a very easy instruction to learn. But the programs 
needed to simulate no more than the elementary instruction set of early 
computers would be enormous. It would be quite a task just to estimate 
the size of the program for a rea1 job. It seems safe to say that the stor- 
age reqiiired would be gigant'ic, a desk cslculstos would probahly be 
faster. 

A complex, but appropriate, language will in fact simplify the pro- 
grammer's task as the problems to be solved become more complex. 

9.8. Relationship to Automatic Programming Languages 

In tracing the development of instruction sets, we have found that the 
advent of more powerful computers designed to tackle larger problems is 
accompanied by more elaborate and versatile instruction vocabularies. 
Programs to do the same job require considerably fewer instructions and 
fewer references to memory. Or, to look a t  it another way, sequencing 
of simpler instructions stored in a relatively s l o ~  memory is replaced by 
interna1 sequencing with high-speed control circuits. This is a form of 
microprogramming using the fastest available memory, one made of 
transistor flip-flops. 

Such an instruction set is still a long way from t,he "superlanguages" 
being developed under the heading of automatic programming. These 
languages are intended to simplify the task of the problem coder, not to 
raise the performance of the machine. The instruction set is an inter- 
mediate level between the programmer's language and t he language of the 
elementary control steps inside the machine. 

A two-step process of translation is thus reqiiired. One is the pro- 
grammed assembly of machine instructions from the stlatements in the 
superlanguage. The other is the interna1 translation of instructions to 
control sequences. The two-step process is a matter of necessity a t  this 
stage of development to keep the complexity of the computer within 
bounds. I t  has the advantage that each language can be developed 
independently of the other to be most effective for its own purpose. 

At the level of the user, there may be a need for developing specialiaed 
languages that facilitate programming of different jobs with varying 
emphasis on arithmetic, logica1 operations, data manipulation, and input- 
output control. At the machine level, where al1 these jobs come together, 
the need is clearly for a versatile and relatively unspecialized language. 
Perhaps the greatest demand on versatility is made by the process of 
translating from an automatic programming language to machine 
language. The performance of a computer in translating its own pro- 
grams is a significant measure of how effective a t001 the instruction set 
really is. 



Chapter 10 

INSTRUCTION SEQUENCING 
by F. P. Brooks, Jr. 

10.1. Modes of Instruction Sequencing 

It is possible to distinguish four modes of instruction sequencing, 
which define the manner in which control rnay or rnay not pass from an 
origina1 instruction sequence A to a new sequence B: 

1. Norma1 sequencing. A keeps control. 
2. Branching. A gives control to B. 
3. Interruption. B takes control from A. 
4. Executing. A lends control to B. 

The first two are the basic modes of instruction sequencing found in the 
earliest automatically sequenced computers. Each instruction normally 
has a single successor, which rnay be defined by an instruction counter 
or by a next-instruction address within the instruction itself. Selection 
of an alternative sequence or modification of the origina1 sequence rnay be 
accomplished a t  a point defined in the origina1 sequence by conditional 
branching (also called jumping, or transfer of controt), by indexed branch- 
ing, or by the skipping or suppressing of one or more of the operations in 
the origina1 sequence. In computers in which the normal sequence is 
defined principally by a counter, an unconditional branch instruction is 
used to specify a normal successor that does not occupy the next address. 

Some conditions that rnay demand a change in instruction sequence 
arise either very rarely or a t  arbitrary times with respect to the program 
being executed. Testing for such conditions rnay be unduly awkward 
and time-consuming. Facilities for program interruption allow sequence 
changes to be set up in advance of the occurrence of the exceptional 

Note: The major part of Chap. 10 has been adapted from two papers by the same 
author: A Program-controlled Program Interruption System, Proc. Eastern Joint 
Computer Conf., December, 1957, p. 128; The Execute Operations: A Fourth Mode of 
Instruction Sequencing, Communs. ACM, vol. 3, no. 3, pp. 168-170, March, 1960. 
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condition, which is monitored continuously; when the exception occurs, 
the current program is interrupted and the iiew sequence is start,ed. 

A rudimentary form of interruption upon the occurrence of an exception 
condition during an instruction executioii (such as overflow) was pro- 
vided in as early a computer as the UKIVAC I. A more genera1 system, 
which monitored external, independently timed conditions, first appeared 
more recently. l 

The fourth mode allows the origina1 sequence to execute instructions 
from another sequence, without changing the nornial sequenciiig contro1 
to specify the second sequence. Implementations of this mode of opera- 
tion are found in two earlier c0mputers.~9~ 

The instruction-sequencing modes of the 7030 are described in the 
following sections, with emphasis on the interrupt and execute features, 
which go considerably beyond those found in earlier computers. 

10.2. Instruction c o u n t e r  

The norma1 instruction sequence in the 7030 is determined by an 
instruction counter which is stepped up automatically by one or two half- 
word addresses for each instruction, depending on whether the instruction 
is a half word or fu11 word long. A full-length instruction may begin a t  
any half-word boundary; branch instructions specify a half-word branch 
address. Any instruction may alter its successor, even if both are located 
in the same memory word, and the successor will be executed 
correctly. 

For entry to a closed subroutine it  is necessary to preserve the current 
setting of the instruction counter. There are severa1 known techniques. 
One is a programming trick, called after its originator the Wheeler sub-
routine l i n k a ~ e , ~  where an instruction is written to load itself into some 
available register (the accumulator or an index register) before branching 
into the subroutine takes place. This technique always takes time and a 
register, whether the branch is actually taken or not. Another solution is 
to employ more than one instruction counter; but if nesting of sub- 
routines to any number of levels is desired, it  is still necessary for the 
program to store the origina1 counter contents after the branching to the 

Jules Mersel, Program Interruption on the Univac Scientific Computer, Proc. 
Western Joint Computer Conf., February, 1956, p. 52. 

Reference Manual, IBM 709 Data Processing System. 
U. A. Machmudov, LEM-1, Small Size Genera1 Purpose Digital Computer Using 

Magnetic (Ferrite) Elements, Communs. ACM, vol. 2, no. 10, pp. 3-9, October, 1959, 
translated from the Soviet publication Radiotechnika, vol. 14, no. 3, March, 1959. 

M. V. Wilkes, D. J. Wheeler, and S. Gill, "The Preparation of Programs for an 
Electronic Computer," p. 22, Addison-Wesley Publishing Compang, Cambridgs, 
Mass., 1951. 



subroutine. A more economica1 method, where the instruction-counter 
contents are stored in a fixed location at  every branch point automatically, 
was discarded because it  takes time in the many cases when the contents 
are not needed after branching. 

The method adopted in the 7030 requires the programmer to specify 
when and where the instruction-counter contents are to be stored before 
branching. This is done by inserting ahead of any of the half-length 
branch instructions, to be described below, a half-word prefix, called 
STORE IXSTRUCTION COUXTER IF. The "if" signifies that the counter con- 
tents are stored only if branching actually takes place, thus saving time. 
Since the counter contents can be stored a t  any memory address, it  is 
not necessary to tie up a register for this purpose. 

The ability to use the instruction counter to index addresses, which 
would make program relocation easier, is not provided in the 7030. 
The main reason for the omission was the lack of index-address bits in 
the tight instruction formats (see Chap. 9). Most instructions can refer 
to one of fifteen index registers, but the most important conditional branch 
instructions can specify only one index register. I t  seemed undesirable 
to restrict that one register permanently to be the instruction counter. 
It was even questioned whether the instruction counter should use one 
of the other fourteen index addresses; some felt that fifteen index registers 
was still not a large number and would have found 31 more comfortable 
for large problems. Without these format restrictions, however, the 
instruction counter could have been profitably included among the index 
registers. As it  is, for simple unconditional branching only, a separate 
instruction BRANCH RELATIVE achieves the desired effect; for other 
branching operations, an extra half word is needed to store the instruc- 
tion counter first in an index register for subsequent indexing of a norma1 
branch instruction. 

Unconditional Branching 

The unconditional BRANCH instruction is accompanied by severa1 
variations. BRANCH DISABLED and BRANCH ESABLED are used to turn the 
program-interrupt mechanism off and on, as will be discussed later; 
these functions are combined with unconditional branching because they 
are frequently needed during entry to and exit from the subroutine that 
takes care of the interrupting condition. BRAXCH EXABLED AND WAIT 

is the nearest equivalent to a stop instruction in the 7030: program execu- 
tion is suspended while waiting for an interrupt signal. This con-
ditional stop instruction allows the computer program to get back into 
step with external operations when they take longer than the interna1 
operations. The built-in interval timer may also restart the computer 
when it is waiting. An unconditional stop instruction is neither necessary 



nor desirable, since its presence would permit one program inadvertently 
to kill other programs that might be sharing the machine. 

BRANCH RELATIVE creates a branch address by adding the current con- 
tents of the instruction counter to the specified address. NO OPERATION 

is a pseudo branch instruction that does nothing. (The 7030 actually 
contains severa1 ways of doing nothing-at very high speed, of course.) 
As in some earlier ccimputers, t h e  operation code of w c  OPERATION differs 
from BRAKCH by the state of a single bit. This makes possible a con- 
venient remotely controlled program switch : the bit may be set to O or 1 
on the basis of a test a t  one point of a program, thus preselecting one of 
two alternative paths to be taken a t  a later point when the test condition 
may no longer be avililable. 

10.4. Conditional Branching 

Conditional branching in the 7030 is distinguished by the functional 
richness of a small number of unified instructions. This is made possible 
by the technique of gathering most machine-set test conditions into a 
single 64-bit indicator register. (,4 48-bit subset of these indicators is 
contiilually monitored for program interruption.) A list of indicators 
with a short description of each is given in the Appendix. The indicator 
word has an address and thus may be used as a regular instruction 
operand. 

,4 single half-leilgth BRANCH ON IXDICATOR instruction is used t0 test 
any one of the 64 indicators. The indicator desired is specified by a 
6-bit field. A further bit specifies branching either when the indicator is 
on (1)or when it is o$ (O). Yet another bit specifies whether the indica- 
tor is to be reset to zero after testing. 

The full-length instruction BRANCH ON BIT extends this testing facility 
to al1 bits in memory. Any bits, including those in the addressable 
registers and thus the indicators, can be tested for either the on or the o$ 
condition. There are 2 bits to specify mhether the test bit is to be (l) 
left alone, (2) reset to 0, (3) set to 1,or (4) inverted. With this instruc- 
tion the programmer can set up, alter, and test individua1 bits as he 
wishes. 

Because of their frequent occurrence, certain elementary indexing and 
associated indicator-branching operations have been combined into the 
two half-length instructions COUNT AND BRAKCH, and COUNT, BRANCH, 

AND REFILL. These are discussed further in Chap. 11. 

There are two quite distinct purposes for a program-interwpt system. 
The first of these is to provide a means by which a computer can make 
very rapid response to extra-program circumstances that occur atl 



arbitrary times and perform a maximum amount of useful work while 
waiting for such circumstances. These circumstances will most often be 
signals from an input-output exchange : that some interrogation has been 
received or that an input-output operation is complete. For efficiency 
in real-time operation, the computer must respond to these forthwith. 
This requires a system by which such signals cause a transfer of control 
to a suitable special program. 

The second purpose is to permit the computer to make rapid and facile 
selection of alternative instructions when the execution of an instruction 
causes an exceptional condition. For example, to avoid frequent and 
uneconomical programmed testing or extremely costly machine stops, it  is 
desirable to have ai1 interrupt system for arithmetical overflow or 
attempted division by zero. 

These two purposes-response to asynchronously occurring external 
signals and monitoring of exceptional conditions generated by the pro- 
gram itself-are quite distinct, and it  would be conceivable to have 
systems for handling them independently. However, a single system 
serves both purposes equally well, and provision of a single uniform sys- 
tem permits more powerful operating techniques. Moreover, the 
interrupt system has also been integrated with conditional branching, 
as mentioned before. 

A satisfactory program-interrupt system must obey several con-
straints. The most important is that programming must be straight- 
forward, efficient, and as simple as the inherent conceptual complexities 
allow. Second, the special circuits should be cheap because their use is 
relatively infrequent. Third, the computer must not be retarded by 
the interrupt system, except when interruptions do in fact occur. Fin-
ally, since there is still little experience in the use of interrupt techniques, 
the interrupt system should be as flexible as possible. 

10.6. Components of the Program-interrupt System 

The first question to be answered in designing a program-int'errupt 
system is: When to interrupt? What is required is (1) a signal when 
there is a reason for interruption and (2) a designation whether inter- 
ruptions are to be permitted. 

Providing the signal is straightforward. For each condition that may 
require attention, there is an indicator that can be interrogated by the 
control mechanism. When the condition arises, the indicator is set on, 
and it may be turned o$ when the condition disappears or when the pro- 
gram has cared for it. As mentioned before, there are 64 indicators 
altogether, arranged in the form of an addressable machine register whose 
contents can be loaded or unloaded in one instruction. 

Designation when interruption is permitted can be made in several 



ways. It is possible to organize a system so that any condition arising 
a t  any time can cause interruption. Alternatively, one can provide a bit 
in each instruction to designate whether interruptions shall be permitted 
a t  the end of that instruction or not. These methods make no distinction 
among the interrupting conditions. It is highly desirable to permit 
selective contro1 of interruptions, so that a t  any given time one class of 
conditions may be perniitted to cause interruptions and another class 
prevented from causing interruptions. 

Therefore, each of the interrupt indicators is provided with a rnaslc 
bit. When the mask bit is on, the indicator in question is allowed to 
cause interruption. When the mask bit is o$, interruption cannot be 
caused by the condition indicated. Twenty-eight of the mask bits can 
be set on or o$ by the program. Twenty other mask bits are permanently 
set 01%; these correspond to conditions so urgent that they should always 
cause interruption when the system is enabled. The remaining sixteen 
indicators, which never interrupt and can be tested only by programming, 
may be regarded as having mask bits that are permanently set to o$. 
Like the indicators, the mask bits are assembled into a single register with 
an address, so that they can al1 be loaded and stored as a unit, as well as 
individually. 

A second major question that the designer must answer is: What is to 
be done when an interruption occurs? In the simplest systems the pro- 
gram transfers to some fixed location, where a jix-up routine proceeds to 
determine which condition caused the interruption and what is to be done. 
This is rather slow. In order to save time, the 7030 provides branching 
to a different location for each of the conditions that can cause interrup- 
tion. The particular location is selected by a Zeftmost-one identi$er. 
This device generates a number giving the position within the indicator 
register of the bit that defines t'he condition causing the interruption. 
This bit number is used to generate a full-word instruction address that 
contains the operation to be performed next. Since it was anticipated 
that the 7030 would often be operated in a multiprogrammed manner, 
the bit address is not used directly as the instruction address, for this 
would require the whole table of fix-up instructions to be changed each 
time the computer switched to a different program. Instead, the bit 
address is added to a base address held in an interrupt address register. 
The sum is used as the next instruction address. One can easily select 
among severa1 interrupt instruction tables by setting the base address in 
the interrupt address register. 

A third major question is: How shall contro1 return to the main pro- 
gram when the fix-up routine is complete? One might cause t,he current 
instruction-counter contents to be stored automatically in a fixed loca- 



tion and then change the instruction-counter setting to the address of the 
appropriate entry in the interrupt table. The solution preferred was to 
execute immediately the instruction specified in the interrupt table 
without disturbing the contents of the instruction counter. (Only one 
such instruction, whether half- or full-length, may be placed a t  each loca- 
tion in the interrupt table.) 

If the interrupting instruction is one that does not alter the instruction 
counter, the program automatically returns to the interrupted program 
and proceeds. This permits exceptionally simple treatment of the con- 
ditions that can be handled with a single instruction. More complex 
conditions are handled by a combination of a store instruction counter 
prefix with a branch to a suitable subroutine; this subroutine is entered 
just like any other. 

A fourth question concerning any program-interrupt system is: How are 
the contents of the accumulator, index registers, etc., to be preserved in 
case of interruption? Automatic storage of these is both time-consuming 
and inflexible. As with respect to the instruction counter, it  appeared 
better to use the standard subroutine philosophy: the fix-up routine is 
responsible for preserving and restoring any of the centra1 registers, but 
fu11 flexibility is left with the subroutine programmer. He needs to store 
and retrieve only what he intends to corrupt. 

The fifth question that must be answered is: How are priorities to be 
established among interrupting conditions, and what allowance is to be 
made for multiple interruptions ? Prorision of the masking facilit y 
answers this problem, since any subset of the conditions may be per- 
mitted to cause interruption. Each fix-up subroutine can use a mask of 
its own, thereby defining the conditions that are allowed to cause inter- 
ruption during that routine. There is also provided a means of disabling 
the whole interrupt mechanism for those short intervals when an inter- 
ruption would be awkward. One such interval is that which occurs 
between the time when a subroutine restores the interrupt base address 
appropriate for the main program and the time when it effects return to 
the main program. The mechanism is disabled or enabled by means of 
the instruction BRANCH DISABLED or BRANCH ENABLED, typically during 
entry to or exit from the interrupt fix-up routine. 

Simultaneous conditions are taken care of by the leftmost-one identifier, 
which selects the condition with the lowest bit address in the indicator 
register for first treatment. This is satisfactory because the fix-up 
routines for the severa1 conditions are largely independent of one another. 
The positioning of conditions within the indicator register defines a 
built-in priority, but this priority can readily be overridden by suitable 
masking whenever the programmer desires. In fact, it might be said 



that the leftmost-one identifier solves the problem of simultaneity, while 
the selectivity provided by the mask solves the problem of over-al1 and 
longer-term priorities. 

10.7. Examples of Program-interrupt Techniques 

Figure 10.1 shows the system organization of a simplified interrupt 
system with only eight interrupt conditions and 32 words of merniry, 
The abbreviated addresses consist of 5 bits for numbering fu11 words and a 
sixth bit for selecting the left or right half word. The numbers 001l1.l 
in binary and 7.32 in decima1 notation are used to refer to the right half 
(starting with bit position 32) of word 7. 

The example starts with condition 6 in the indicator register on. The 
mask register is set up to allow only conditions 1and 4 to cause interrup- 
tion. Instruction 7.32 has just been executed, and tbhe instruction 
counter has been stepped up to 8.0. There is no interruption; so the next 
instruction is taken from location 8.0 in the norinal manner, 

In Fig. 10.2 the execution of instruction 8.0 is accompanied by the 
occurrence of condition 1. The leftmost-one identifier generates the 
number 1 which is added to the 24 contained in the interrupt address 
register. The result, 25, is used as the address of the next instruction 
rather than the 8.32 contained in the instruction counter, which is 
unchanged. 

In Fig. 10.3 is shown the case when the instruction a t  location 25.0 
does not change the instruction counter. The interrupt nlechanism has 
turned off condition l which caused the int'err~pt~ion. n'o other condition 
and mask bits coincide. After the instruction a t  location 25.0 is com- 
pleted, the next instruction is taken from the location specified by the 
instruction counter, which still contains 8.32. This one-instruction fix-up 
routine might be used to reset the interval timer a t  the end of an 
interval. 

Figure 10.4 shows a different sequence that might have followed Fig. 
10.2. Suppose indicator 1 represents an end-of-file condition on a tape 
and severa1 instructions are needed to take care of the ~ondit~ion. In 
this case the instruction a t  location 25.0 disables t,he interrupt mecha- 
nism, stores the instruction-count,er coiatent,~ (8.32) as a branch address in 
the instruction a t  location 21.32, and then branches to location 19.0. 
The fix-up routine proper consists of the instructions between 19.0 
and 21.0 (it might be of any length and might include testing and sched- 
uling of further input-output operations). During the routine no more 
interruptions can oceur. Instriiction 21.32 is 2 BRAXCM ENABLED 

instruction, the address part of which was set to 8.32. This returns con- 
trol to the interriipted program a t  location 8.32 and reenables the mecha- 
nism so that further interruptions are possible. If another interrupt 
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FIG.10.1. Program-interrupt example. Condition masked o$: no interrupt. 
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Fxc.10.2.Program-interrupt exainple. Condition masked on: interrupt occurs. 



DIAGRAM PROGRAM SEQUENCE 

Instruction Idcation First  Second
Enable- Interrupt Operation address address

Indicator disable address Instruction 
regi ster flia-floa reaister counter 

ADD 

01000.0 MULTIPLY 

TRANSMIT 

01000.1 STOKE 
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and next 
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invert 

FIG.10.3. Program-interrupt example. One-instruction h-up.  
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PROGRAM SEQUENCE 

Instruction counter Instruction location First Second
Enable- Interrupt 01 000.1 Operation address addressIndicator disable address q0011,o t. 2 1 - 3 2  Binary 

register flip-flop register 
o01 11 .l ADD X 

01 000.0 MULTIPLY Y 
11001.0 STORE INSTRUCTION 

COUNTER IF BRANCH 
DISABLED 2 1 . 3 2  19.O 

b 
10011.o W 

m 

101 01 .l BRANCII ENABLED -
o1 000.1 STORE z 

FIG.10.4. Prograni-interrupt example. Interrupt subroutine with further interrupts inhibited. 
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condition is already waiting, another interruption will take place immedi- 
ately, even before the instruction a t  location 8.32 is executed. 

The program in Fig. 10.4 assumes that it is desired to prevent further 
interruptions during the fix-up routine. If further interruptions were to 
be allowed during the routine and the same mask still applied, the pro- 
grammer would use only a STORE INSTRUCTION COUNTER IF BRANCH 

instruction at location 25.0 and a simple BRANCH instruction a t  location 
21.32. This procedure is appropriate when and only when the pro- 
grammer is certain that condition 1cannot arise again either during the 
fix-up routine or during any other routine that might interrupt it. 

P 

Instruction location 

Binar y 
Operation 

First 
address 

Second 
address 

P 

ADD 2 

MULTIPLY Y 
STORE INSTRUCTION COUNTER IF 

BRANCH DISABLED 23.32 19.O 
SWAP Mask Temporary 

register storage 
BRANCH ENABLED 20.32 
LOAD W 

BRANCH DISABLED 22.32 
SWAP Mask Temporary 

register storage-BRANCH ENABLED 

STORE z 

FIG. 10.5. Program-interrupt example. Interrupt subroutine permitting further 
interrupts. 

I n  the most sophisticated use of the program-interrupt mechanism, 
where it is desired to employ a long fix-up routine that is to be interrupted 
under a different set of conditions, the program in Fig. 10.5is appropriate. 
The mechanism is disabled a t  the time of the first instruction after inter- 
ruption. The new mask is loaded and the old preserved. The mecha- 
nism is then enabled. At the end of the routine the mechanism is dis- 
abled, the old mask restored, and the mechanism is reenabled as contro1 
is transferred to the originally interrupted roiitine a t  location 8.32. 

This procedure is clearly suitable for any number of levels of inter- 
ruptions upon interruptions, each of which may have a different set of 
causing conditions. Each leve1 of routine is under only the usual sub- 
routine constraint of preserving the contents of the registers it uses. 



Fu11 program contro1 simplifies programming and multiprogramming, 
as does the refusal to assign special functions to fixed memory locations. 
The task of the programmer of fix-up routines is simplified by the pro- 
vision of special operations and by the adoption of the same con-
ventions and requirements for interruption routines as for ordinary 
subroutines. 

,4n especially i ~ p o r t a n t  feat-lire of the program-interrupt systeni just 
described is that it makes almost no demands upon the writer of the 
lowest-leve1 program. He need only set up the interrupt address register 
and the mask register. He need not even understand what he puts there 
or why, but may follow the local ground rules of his installation. Priori-
ties, preservation of data, and other programming considerations that 
are inherent in program interruption concern only the author of the fix-up 
routines. In open-shop installations it is important that any program- 
ming burden caused by such sophisticated operation fa11 upon the full- 
time utility programmer rather than upon the genera1 user. 

10.8. Execute lnstructions 

In an ezecute instruction the address part specifies, directly or indi- 
rectly, an object instruction to be executed, but does not set the instruction 
counter to the location of the object instruction, as a branch instruction 
would do. The next in~t~ruction to be executed, therefore, is the suc- 
cessor of the execute instruction rather than the siiccessor of the object 
instruction. This is illustrated below. 

L&ion / Operation i Address 1 Comments 

100.0 EXECUTE 1715.0 Instruction counter steps to 100.32 / I I(1715.0) LOAD z Interpolated object instruction 
100.32 / (Neut instruction) l 

With the instruction counter a t  location 100.0, the instruction EXECUTE 
1715.0 is fetched. This instruction now causes the word nt address 
1715.0, the object instruction LOAD X, to be loaded into the instruction 
decoding circuits and to be executed just as if it had occurred in the pro- 
gram a t  address 100.0. The instruction counter meanwhile has advanced 
to location 100.32, where the next instruction to be executed will be 
found. (Note that EXECUTE in the 7030 is a half-length instru~t~ion.) 

In  effect, an execute operation calls in a one-instruction subroutine 
and specifies immediate return to the main routine. This is similar to 
indirect addressing (see Chap. Il), except that the whole inst'ruction, not 
just the address part, is selected from the specified location. 



The uses of the execute operations arise directly from the fact that the 
object instruction does not imply its own successor. In the IBM 709, 
for example, execute simplifies modification of nonindexable and non-
indirect-addressable operations such as those for input-output. In the 
Soviet LEM-1 computer,l there are 1,024 words of erasable storage and 
7,167 words of read-only storage; here the execute operations permit pro- 
grams in the read-only storage to use isolated modifiable instructions in 
the regular storage. 

The one-instruction subroutines provided by the execute operations are 
especially useful in linkages between a main program and ordinary sub- 
routines. For instance, a subroutine may need severa1 parameters, such 
as character size, field length, index specification, etc. The calling 
sequence may include these parameters in actual machine instructions 
which the subroutine treats as second-order subroutines. This ability to 
lend contro1 back and forth, between calling sequence and subroutine, 
should permit many new subroutine linkage techniques to be developed. 

One useful special case of this form of subroutine technique occurs in 
interpretive routines where machine-language instructions can be inter- 
mixed with pseudo instructions in the argument program. The inter- 
preter can t hen execute t he machine-language instruc tions direc tly 
without transplanting them into itself. 

The one-instruction subroutine techniques provided by execute opera-
tions permit counter-sequenced computers to use the efficient program- 
ming tricks of the IBM 650, in which instructions are executed directly 
from an accumulator. 

For al1 the foregoing purposes it  is preferable for the execute operation 
to have any machine instruction as its object. Thus one may desire to 
execute an arithmetic instruction, a branch instruction, or even another 
execute instruction. Actually the occurrence of a branch instruction as 
the object instruction of an execute operation would be rare in any of 
these applications. This fact makes it possible to add the restriction of 
not permitting execute to perform branch operations-a very useful restric- 
tion for other major applications. 

One of these applications is program monitoring, where the object 
instruction of an execute operation should be prevented from changing 
the instruction counter that controls the monitoring routine. Consider, 
for example, a supervisory program A, such as a tracing routine, which is 
to monitor the execution of an object program B, perhaps with testing 
or printing of the instructions of B as they are executed. With an ordi- 
nary set of operations, the programming to effect such monitoring is 
quite clumsy. Each instruction of B must be moved from its norma1 
place in memory to a place in the sequence of A. Then it  must be tested 

l Machmudov, op.  cit .  



to  ensure that  i t  is not a branch instruction or, if it is, that the branching 
condition is not met; for the execution of such an operation would transfer 
contro1 of the machine from the supervisory program to some point within 
the object program. Finally, after the transplanted B instruction has 
been executed, A must update a pseudo instruction counter that keeps 
track of the progress of B, and repeat the whole process with the next B 
instructinn. If the B Instruction is a successful bramh, ,4 must appro- 
priately revise the pseudo instruction counter. This programmed 
machinery is common to al1 monitoring routines and must be executed 
in addition to the actual monitoring desired. 

10.9. Execute Operations in the 7030 
The two execute operations in the 7030 are designed so that they can 

be used for one-instruction subroutines and for program monitoring. 
They are called EXECUTE and EXECUTE INDIRECT AND COUNT. Each 
causes a single instruction to be fetched from an addressed location and 
executed, except that execution may not change the instruction counter. 
If the object instruction specifies a branch operation (which would cause 
such a change), branching is suppressed and the execute exception indi-
cator is actuated, which may interrupt the (monitoring) program. 
Moreover, the object instruction is not allowed to change the state 
(enabled or disabled) of the interrupt system. 

In  the EXECUTE operation, the address specifies the object instruction 
directly. In  the EXECUTE INDIRECT AND COUNT operation the address 
specifies a pseudo instruction counter in memory, whose contents are 
the location of the object instruction. After the object instruction is 
performed, the pseudo instruction counter is incremented according to 
the length of the object instruction. This last feature is particularly 
convenient in a computer that has instructions of different lengths, and 
it uses equipment that the computer must have anyway. Any execute 
operation may have another execute operation as its object. This useful 
function makes i t  possible, however, for a programmer's error to initiate 
an endless loop of execute operations and thus never reach the end of the 
instruction. Since the ordinary interrupt system can interrupt only 
between instructions, a special signal forces an interrupt'ion after severa1 
hundred repeated operations, so that the computer will not be tied up 
indefinitely. (The same signal is used to terminate an endless indirect- 
addressing loop.) 

The 7030 execute operations, then, not only provide the ability to 
execute an isolated instruction, with automatic return of contro1 to the 
monitoring routine, but also provide for (1) suppression of branching, 
and (2) signaling to the monitoring routine when branching is attempted. 
These properties considerably simplify monitoring routines. The 



automatic return obviates the need for transplanting the instructions of 
the object program into the monitor. The suppression of branching 
ensures that the monitor can retain control without detailed testing of 
the object instruction. The notification of attempted branching permits 
the monitoring program to update the pseudo instruction counter for the 
object program without detailed testing. Since this detailed testing of 
the object instruction for branching and skips occupies a large part of 
conventional monitoring programs, the execute operations make such 
programs much more efficient. The EXECUTE INDIRECT AND COUNT 

operation gives further efficiency because it automatically increments the 
pseudo instruction counter. 

A simple monitoring loop for performing a control trace in the 7030 
computer reduces to : 

Location Operation Address 

100.0 EXECUTE INDIRECT AND COUNT Pseudo instruction counter 
100.32 BRANCH 100.0 

When a branch occurs in the object program, this loop is interrupted, 
and a suitable routine records the tracing data and changes the pseudo 
instruction counter. 

The execute operations can in theory be put into any stored-program 
computer. Their mechanization is somewhat simpler and more justifia- 
ble in computers that use an instruction counter for norma1 sequencing. 
Provision of the safeguards that permit the operation to be used for 
monitoring is greatly simplified in computers that have program-inter- 
ruption systems. In other computers, attempts by the object program 
to change the sequence must be signaled by setting conditions that stop 
the machine or are tested by branch instructions. 

An obvious extension of the execute operations would be to have the 
EXECUTE INDIRECT AND COUNT operation automatically change the 
pseudo instruction counter when the object instruction is a branch. 
There would still need to be an alarm to the monitoring program, how- 
ever, so this function was not incorporated in the 7030. 



Chapter 11 

INDEXING 
by G.A. Blaauw 

II.I.Introduction 

A basic requirement for a computer is that writing a program should 
take less effort than performing the desired operations without the 
computer. Most computer applications, therefore, use programs that 
can be repeated with different sets of data. There are severa1 possible 
techniques. 

In the earliest machines the technique employed was to change the 
content's of a few storage locations between successive executions of the 
program. A lat'er method of achieving the same result was to change not 
the data a t  a given address but the addresses used by the program. 
This procedure permitted many more storage locations to be used and 
widened the scope of computer applications considerably. Early com- 
puter~ ,  whose programs \vere specified by pluggable wiring, paper tape, 
or cards, permitted little or no address alteration. The invention of 
stored-program computers provided a major advance because it allowed 
programs to be treated as data, so that any instruction of a program could 
be modified by the program it,self. The main application of this genera1 
facility was for the modification of addresses. 

Subsequently, it  became apparent that programmed address computa- 
tion, though sufficient in theory, was cumbersome in practice. Too much 
computing time and program space were required to perform these 
auxiliary operations. A remedy was provided by an address register, 
also called index register or B-line,' whose contents could automatically 

Note: Chapter l 1  is a reprint with minor changes of G. A. Blaauw, Indexing and 
Control-word Techniques, I B M  J. Research and Development, vol. 3, no. 3, pp. 288- 
301, July, 1959. A condensed version was published previously under the title, Data 
Handling by Contro1 M70rd Techniques, Proc. Eastern Joint Computer Coni., Decem- 
ber, 1958, pp. 75-79. 

T. Kilburn, The University of Manchester High-speed Digital Computing 
Machine, Nature, vol. 164, no. 684, 1949. 
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be added to the specified operand address to obtain the actual address of 
the operand. In recent machines severa1 index registers-up to 100- 
have been made available. Thus address computation has partly taken 
the place of data transmission between storage locations and has sub- 
sequently been simplified by the introduction of index registers. 

Providing specialized machine functions, such as indexing, for opera- 
tions that could also be programmed was not new. In theory, al1 machine 
instructions but one are redundant; as noted in Chap. 9, an instruction 
repertoire can be replaced by a single, well-chosen instruction. In prac- 
tice, a repertoire of more than one instruction is justified by the operating 
time and program space that are saved. Similarly, special-purpose 
registers, such as index registers, may be justified when they increase 
the effective speed and capacity of t.he computer enough so that the gain 
in performance offsets the expense of the added equipment and improves 
the performance-to-cost ratio. This type of performance gain should be 
accompanied by greater programming ease. Programming ease greatly 
affects the form that an added function should take, but, because pro- 
gramming ease is hard to express in a cost figure, it is rarely used as the 
sole justification for added equipment. 

In the design of the IBM 7030, an attempt has been made to achieve 
great flexibility and generality in machine functions. The indexing func- 
tions and the associated instruction set, consequently, were examined 
carefully. The general principles that were considered in this examina- 
tion will be discussed first. The built-in functions that were developed 
for the 7030 as a result of the examination will be described subsequently 
and illustrated by examples. 

I 1.2. Indexing Functions 

Indexing functions may be divided into four groups: (1) address 
modification, (2) index arithmetic, (3) termination, and (4) initializatioii. 
The first group is used in addressing operands and provides the justifica- 
tion for the existence of index quantities. The other groups concern the 
task of changing the index quantities, the tests for end conditions, and the 
set-up procedures. These operations are often termed houselceeping. 

Address Modijìcation 

The common use of an index register is the addition of its contents, 
the index vaiue, to the address part of an instruction, which will be called 
the operand address, in order to address memory with the sum, the 
e$ective address. This operation is called address modijìcatzon. The 
operand address and the index value remain unchanged in storage. 

Address modification is used in general to address successively the 
elements of an array. L4n array may be one-dimensional or multidimen- 



sional, and its elements may be single-valued or multivalued. The 
address of a value that is part of an array can be subdivided into three 
distinct parts. The first part, the base uddress, identifies the location of 
the array within memory. The second part, the element address, identi- 
fies the location within the array of the element currently being used in 
computation. The element address is specified relative to the base 
address and is inbependerit of the location of the array in memory. She 
third part, the relative address, specifies the location of the array value 
relative to the current element. The relative address is independent of 
the location of the array and of the selection of the current element. The 
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FIG.11.1. Example of addressing of nearest neighbors in two-dimensional array. 
Example shows a 6 X 5 array of three-valued elements, with relative addressing of 
the second value of one element and of its four nearest neighbors. 

array value may be part of the current element or it may be part of 
another element. A well-know-li case in technical computation is the 
addressing of right, left, upper, and lower neighbors of an element in a two- 
dimensional array. Figure 11.1 illustrates this case and shows how the 
address of a particular array value is formed as the sum of base address, 
element address, and relative address. 

The base address and relative address are constant throughout the 
execution of the program. The base address is determined as part of the 
task of memory allocation. The relative address is determined as part 
of the programming task by the characteristics of the computation to be 
performed. The element address, on the other hand, is not constant. 
It changes as the computation proceeds from one element to the next. 

Al1 three components, base, element, and relative address, must be 
available during address modification. Therefore, each of these addresses 



must be found either in the operand-address part of the instruction or in 
the index values of index registers. In order to make address modification 
effective, the variable part of the array address, the element address, 
should be part of an index value. The relative address is used to address 
different values for a given element address. In  order to preserve the 
identity of the selected element, the index value, which contains the 
element address, must remaim unchanged. Therefore, the relative 
address should be part of the operand address. The base address may be 
part either of the operand address or of an index value. In the first case, 
it is added to the relative address; in the second case, it may be added to 
the element address. 

Index Arithmetic 

As computation proceeds, successive elements of an array are addressed. 
The element addresses are generated by the algorithm appropriate for the 
use of the array in the computation. Since the element address is part 
of an index value, the address computation may be accomplished by 
index arithmetic. Very often the algorithm is a simple recurrent process 
in which a new index value is obtained by addition of an increment to 
the old index value. 

There are severa1 algorithms that cannot be described as simple 
incrementing processes. In particular, some algorithms make use of 
variables that are data or instructions rather than known parameters of 
an array. The use of data in index arithmetic occurs in tabie reference 
techniques. The use of inst'ructions in index arithmetic occurs in 
indirect addressing. In this mode the effective address is used not as the 
address of an operand but as the address of an instruction whose effective 
address is the address of the operand (see Sec. 11.11). 

The conventional use of the effective address as the operand address 
is called direct addressing, in contrast to the indirect addressing mode. 
In a simple incrementing process another addressing mode, immediate 
addressing, is often used. In this mode the effective address is used as 
an operand rather than as the address of an operand. 

Termination 

Each time an index is altered by index arithmetic, a test may be 
performed to determine when the last element of the array has been 
addressed. This process is called termination. Some of the forms of the 
test are (1) limit comparison, (2) length subtraction, and (3) counting. 
In limit comparison, the current index value is compared with a given 
constant, the limit. In length subtraction, a given variable, the length, 
is reduced by the value of the increment and tested for zero. In counting, 
a given variable, the count, is reduced by 1 and tested for zero. 



The three methods of test are closely interrelated. When the base 
address is part of the index value, the limit is the sum of the base address 
and the length; the limit has the advantages that it stays fixed and that 
a comparison is rather simple to implement. The length, in turn, is 
the product of increment and count and so is independent of any base 
address to be added to the index value. Counting permits the test for 
completion to be independent of bsth base sddress aind incrernent, so that 
even an "increment" of zero is possible. 

Instead of a separate quantity, such as limit, length, or count, the 
index value itself can be used to determine the end of the process. In 
that case, the index value serves as a length, or, in other words, a limit of 
zero is implied. This approach, which is followed in the IBM 704, 709, 
and 7090, requires a minimum of information, but the base address 
cannot be part of the index value, and address modification must be sub- 
tractive rather than additive. A greater degree of freedom in specifying 
index values and tests is very desirable. Therefore, independence of 
index value and termination test is preferred. In the 7030, counting 
has been chosen as the primary means for determining the end of an index- 
modification sequence. The conclusions reached in the course of the dis- 
cussion are, however, equally valid when a limit or length is used. 

After the last element of the array is addressed, the index value and 
count must each be changed to the initial setting for the array to be 
addressed next, which may be either the same array or another. This 
housekeeping operation is called initialization. Of course, initialization 
also occurs prior to the entire array-scanning operation. This case is 
the least frequent; it  is usually part of a more genera1 loading and reset- 
ting procedure, and its characteri~t~ics influence the indexing procedures 
to a lesser degree. 

A summary of the indexing functions that have been described is 
shown in Table 11.1. The quantities that occur in the indexing pro- 
cedure for a simple array are listed in the second column. The opera- 
tions that make use of these quantities are listed in the third column. 

Function Operation 

Index use Index value Address modification 
Index change Increment Incrementing 
Index test Count Counting and zero testing 
Index reset Next initial: Replacement of : 

Index value Index value 
Count Count 



Of the quantities listed, the index value is, of course, in the index 
register. This leaves four quantities that must reside somewhere. 
Earlier approaches have relied on storing these quantities in general 
memory locations. Of the four operations listed, address modification 
was usually the only built-in machine operation. In most earlier 
machines the other three operations were performed by separate instruc- 
tions. For the 7030 it was decided to combine three of the quantities 
into one 64-bit index word, consisting of the index value, a count, and the 
address of another index word (Fig. 11.2). These three quantities may 
be used either independently or together by means of built-in combined 
indexing operations. When the three quantities in an index word belong 
to the same indexing or data-transmission operation, the word is often 
referred to as a control word. The terms "index word" and "control 

Chain and control bits 
r 

I 

Index value 2 Count R e f i l l  
I 

FIG.11.2. Index or control-word format. 

word" are largely synonymous, but the latter is intended to imply a 
certain mode of operation that will be discussed in subsequent sections. 

II.3. Instruction Format for Indexing 

A general discussion of instruction formats was given in Chap. 9. 
We shall here consider instruction formats more specifically as they are 
affected by indexing. 

Relative addressing requires at  least one field in the instruction format 
for direct-operand designation, called the operand address field, and one 
field for indirect-operand designation, called the index address field. 
The index-address field specifies the index used in operand-address 
modification. I t  is, of course, desirable to have a uniform system of 
operand addressing, where address modification is available for each 
operand. 

I t  would serve no purpose to provide more than one direct designation 
for each operand. More index-address fields would be used rather infre- 
quently. They might find application in multiple indexing, an index- 
arithmetic algorithm which forms the sum of two or more independently 
computed index values. It was decided not to burden every operand 
designation with added index-address fields, but to provide instead a 
separate instruction, LOAD VALGE WITH SUM, to be used only when needed. 
This instruction adds any selected number of index values and places the 
sum in another selected index value. 

With an operand-address field and an index-address field required to 



specify each operand and with severa1 operands necessary for most 
operations, the instruction format would become inefficient unless implied 
addresses or truncated addresses were used. 

When two operands are needed for the usual single-address arithmetical 
instruction, one of the operands comes from an implied address, the 
accumulator, and the result is returned to an implied address, often 
again the acctimulator. In the index-arithrnetic operations of the 7830 
the use of such implied addresses has been extended by specifying more 
than one operation in one instruction, as will be described in the following 
sections. 

The use of a truncated address, c~nt~aining fewer bits than norma1 
operand addresses contain, saves instruction space, but i t  also reduces the 

(a) Single-address format 

Operand address Operation 

Operand address 

(e) Two-address format 

I 

FIG. 11.3. In~t~ruction formats. 

(b) Index arithmetic format 

Operand address 

number of available address locations and consequeritly makes the 
instruction set less general. A truncated address for index registers 
may be justified, however, (1) because a program usually needs only a 
limited number of index registers, and a complete address would therefore 
be inefficient ; (2) because limiting the number of index registers permits 
preferred treatment for these registers to speed up index-arithmetic 
operations and address modification; (3) becauee truncation of the index 
address makes it  practical to include a second index address in index- 
arithmetic instructions, which greatly improves the efficiency of these 
instructions. 

Nevertheless, some applications require complete generality for index 
addresses. For these cases an instruction RENAME effectively expands an 
index address to fu11 capacity; it  loads an index register from any desired 
memory location, retaining the address of the memory location, and the 
contents are automatically stored back a t  the origina1 location before the 
index register is loaded by a subsequent RENAME instruction. 

I J 

I Op. 

Op. 

Operand address Operation I 



It would have been possible to improve the efficiency of operand speci- 
fication by truncating the operand address. This method was not used, 
however, since the size of relative addresses would have been restricted 
and the base address could not then be part of the operand address. 

In referring to the basic single-address format of the 7030, such aux- 
iliary truncated addresses as the index address I used in address modifica- 
tion are not counted. The I address is considered part of the operand 
specification. Index-arithmetic instructions use a single-address format 
to which a second index-address field J has been added so that the second 
operand can be addressed explicitly. Some operations, for which two 
complete explicit operand addresses are desired, use a two-address format 
consisting of two single-address formats, each with an I address. Figure 

INSTRUCTION INDEX WORD 

Operand Operation Index lndex Refi11 
address code address value Count address 

Effective address 
(to mernory) 

FIG.11.4. Address modification. 

11.3 shows the three basic formats. Figure 11.4 shows, in schematic 
form, the basic address-modification function of indexing. 

Index incrementing could be performed in the accumulator by a series 
of three single-address instructions, which add the increment to the index 
value and return the result to the index register. Actually, only the 
increment and the index register to be modified need specification, and 
the short index-arithmetic format can be used to specify an entire 
incrementing operation, called ADD TO VALUE. This operation makes 
use of the index adder provided for address modification. The main 
arithmetical process for data is thus separated from the housekeeping 
process, and data registers are not altered. In the ADD TO VALUE opera-
tion the operand address specifies the address of the increment to be 



added to the value part of the index register specified by the index address 
J. The operand address can itself be indexed by the index value speci- 
fied by the index address I, just like any other operand address. This 
gives indexable index arithmetic. A schematic diagram of the incre- 

ADD T0 VALUE 

COUNT 

Next initial --mrH 

REFILL 

FIG. 11.5. Incrementing, counting, and realing. Operations may be performed 
separately or in combination. 

menting operation is shown a t  the top of Fig. 11.5. Severa1 variations of 
the basic ADD TO VALUE instruction, permitting sign inversion and immedi- 
ate addressing, are also available. 

The quantity used in incrementing is specified explicitly in the incre- 
menting instruction of the 7030. A different approach is possible. The 
increment could be associated with the index value such that the address 



of the increment would be known whenever the index was addressed. 
As pointed out in Chap. 9, an advantage is obtained from implied 
addressing only when the implied operand, here the increment, remains 
unchanged during repeated references. Furthermore, the incrementing 
operation could then be combined with another operation that uses the 
same index address. For instance, it  would be possible to specify in 
one single-address instruction the use and the subsequent incrementing 
of an index. This method, however, loses it,s value when several different 
increments must be used to change an index value or when the increment- 
ing and index use must occur in different parts of the program. In order 
to achieve greater generality, the separate ADD TO VALUE instruction has 
been chosen in preference to a combined instruction. 

11.5. counting 

In the termination of array scanning, more than one count may be used, 
just as several increments may be used in index arithmetic. A single 
count is most frequent, however. It is, therefore, profitable to associate 
the count used in the termination with the index value to which the 
process applies and to use implied addressing. Since counting normally 
occurs when the index value is changed, it  is logically consistent to specify 
incrementing and counting in one index-arithmetic instruction, ADD TO 

VALUE AND COUNT. This instruction is available in addition to ADD TO 

VALUE. I t  becomes equivalent to count when the increment is zero. 
An implied address for the count can be obtained in various ways. 

A solution, economica1 in time and space, is to place both index value and 
count as separate fields into the index register. These are two of the 
three quantities that make up a contro1 word. The instruction ADD 

TO VALUE AND COUNT adds the addressed increment to the index value, 
reduces the count by l, and provides a signal when the count becomes 
zero. Counting is shown schematically in the center of Fig. 11.5. (The 
rejill operation, indicated a t  the bottom of the figure, will be discussed in a 
later section.) 

The choice of counting as a test for termination and the use of an 
implied address for the count do not preclude other termination tests. 
In particular, a COMPARE VALUE instruction is made available to allow 
limit tests, and instructions to add to or subtract from the count can be 
used for the equivalent of length subtraction. Such extra instructions 
add flexibility to the instruction set, but they are less efficient than ADD TO 

VALUE AND COUST. 

The following example, to be expanded later, illustrates the use of 
counting in a simple technical computation. I t  is required to multiply 
vectors A and B. Each vector has n elements. Vector A has its first 



element a t  ao. Vector B has its first element a t  bo. The product is 
to be stored a t  co. A is stored in successive memory locations. B is 
actually a column vector of a matrix, whose rows have p elements and are 
stored in successive memory locations. Therefore, the elements of B 
have locations that are p apart. The program is shown in Table 11.2. 

Instructions 

Initial setup -+ f Load i from i o  
f + l  Load j from jo 
f + 2  Set accumulator to zero 

Vector multiply, inner loop f + 3 Load cumulative multiplicand from a*, t-
indexed by i 

Multiply cumulatively by bo, indexed by j 

Housekeeping, inner loop f + 5 Increment j by p 
f + 6  Increment i by 1, count, 
f + 7  Branch to f + 3 if count did not reach 

zero 

Vector multiply, outer loop f + 8 Store cumulative product co 

Contro1 words Diag~amof uector dimensions I 

Contents after executing the inner loop 

x times: 
Address 

i 
Index vahe 

x 
Courlzl 
n - x  

I 
a0 

A 

i o  O n 
j ZP . . .  
i o  o . . . 

Multiplicand and multiplier are specified in instmctions f + 3 and f + 4. 
Their product is added to the accumulator, which c~nt~ains  the sum of 
the previous products, This operation is called cumulative multiplication. 
The count in control word i terminates the cumulative multiplica- 
tion. The count in control word j is not used. The example shows 
that the use of the cont(ro1 words i and j in two instructions requires 
five added instructions in order to change, test, and initialize these control 
words. Three of the latter instructions are in the inner loop. Although 
the simplicity of the arithmetical process in this elementary example tends 
to overemphasize the housekeeping burden, it is clear that further sim- 
plification of the indexing procedure would be desirable. 



11.6. Advancing by O n e  

An array in which elements have consecutive addresses, such as vector 
A in Table 11.2, requires an increment of 1 to be added to the index 
value. The frequent occurrence of a value increment of 1, often coupled 
with counting, suggests the definition of an advance and count operation, 
whicki is the same as ADD TO VALUE AND COUNT with an implied increment 
of 1. Because the increment is implied, the operand address is free for 
other use; so the advance and count operation can be combined with still 
another single-address operation. A suitable candidate for such com- 
bination is the conditional branch operation that refers to the zero-count 
test. The new instruction, which also has severa1 variations, is called 
COCNT AND BRANCH. The variations add no new indexing concepts and 
will not be discussed in detail. 

In the example of Table 11.2, instructions f + 6 and f + 7 can be 
replaced by a single COUNT AND BRANCH operation. 

I I .7.Progressive Indexing 

In discussing index use it was pointed out that a base address can be 
part of either the operand address or the index value. When the base 

performoperation \v , , ,
using V as effective 
operand address 
Increment V by A 
Count and refill, i f  decired 
(as beforel 

FIG.11.6. Progressive indexing. 

address is part of the index value and the relative address is zero, the 
operand address is not used a t  all. The main operation can then be 
combined with an ADD TO VALUE AXD COUNT operation. The index 
value is first used as an effective address to address memory; subsequently 
it  is incremented by the operand address, which acts as an immediate 
increment. This is the same order of events that occurs when two 
separate instructions are used. The operation part of the instruction, 



besides specifying the arithmetical operation, also specifies: Use the index 
value as  the efective address, and subsequently increment and count. This 
type of indexing will be called progressive indexing and is shown in Fig. 
11.6. Simple arrays that permit progressive indexing are frequently 
encountered both in data processing and in technical computations. 

In  the vector-multiplication problem of Table 11.2, the base addresses 
a0 aad òo could have been placed in the value field of io and j o ,  respectively. 
If progressive indexing were used, instruction f + 5 could be combined 
with f + 4 and, instead of using the COUNT AND BRANCH operation sug- 
gested in the previous section, instruction f + 6 could be combined with 
f + 3. As a result, the program would be shortened both in instructions 
and in execution. 

e Load element R, length r bits, from location specified by i, and increment i 
by r .  

e + l  Compute with element R. 
e i - 2  Load element S, length s bits, from location specified by i. 
e + 3  Compute with element S. 
e + 4  Store new element S, length s bits, a t  location specified by i, and increment i 

by s. 
e + 5  Add l to element T, length t bits, in location specified by i, and increment i 

by t. 
e + 6  Load accumulator with a constant. 
e + 7  Compare accumulator to element C, length u bits, in location specified by i, 

and increment i by u. 

FIG.11.7. Progressive indexing on elements of varying length. 

The use of progressive indexing in a data-processing operation is illus- 
trated in Fig. 11.7. A series of elements of different lengths is processed. 
During the computation appropriate for each element, addressing of the 
element is combined with progressive indexing. As a result, processing 
can proceed from one element to the next without extra index arithmetic. 
The example also shows the use of indexing words and bits within a word, 
as provided in the 7030. 

11.8. Data Transmission 

When an increment of 1 is implied, as in the COUNT AND BRANCH 

operation, the count becomes the equivalent of a length and represents 
the number of adjacent words in the addressed memory area. When, 



furthermore, the index value is used as an effective address, as in pro- 
gressive indexing, the initial index value is the base address that refers 
to the first word of the memory area. A memory area can, therefore, be 
specified in position and length by the value field and count field of a 
control word. This makes it  convenient to specify the memory areas 
involved in data transmission by means of control words and gives the 
control word the characteristic of a shorthand notation for a memory 
area. 

Data may be transmitted between two memory areas or between input- 
output units and memory. The block of data transmitted in a single 
operation will be assumed to consist of one or more records (see Chap. 4). 
A control word may be used for both indexing and data transmission. 
This generality makes it  possible to associate a control word with a 
record and to use it  to identify the record throughout an entire program, 
including reading, processing, and writing. The use of control words in 
transmitting data directly between input-output units and memory is 
further described in Chap. 12. 

Data Ordering 

A common procedure in data-ordering operations, such as sorting, 
merging, queuing, inserting, and deleting, is to move records from one 
memory area to another. With control words it  is possible to replace 
the transmission of a record containing many data words by the trans- 
mission of a single control word specifying that record. 

As an example, consider n records stored in random order. I t  is 
desired to write the records on tape in a sequence determined by com- 
paring one or more identi$er fields in successive records. After the 
comparison is made, the actual sequencing is accomplished by ordering 
the control words associated with the records. To make the comparison, 
the identifier of each record is located by specifying its address relative to 
the base address in the control word for that record. In the course of this 
procedure the control words may be placed in the correct order in suc- 
cessive memory locations. The sequence of the control words then 
specifies indirectly the sequence of the associated records. When the 
records are written on tape, the control words are used in the order of 
their addresses. Consequently the records appear on tape in the desired 
sequence. No record transmisson is required other than from memory 
to tape. 

The preceding example illustrates the case of a group of records that 
are to be moved as one block. The records cannot be described by a 
single control word since they are not necessarily in successive memory 
locations if their sequence is to be changed. The block is then described 
by a series of control words. The transmission to or from input-output 



devices can, however, be mechanized as a single operation by defining a 
chain of control words. 

A control-word chain is started by the control word specified in the 
instruction. The chain may be continued by taking control words 
from successive memory locations. The chain is ended when some kind 
of end condition is sensed. A convenient end condition is the presence or 
absence of a bit in the control words. This bit will be called the chainJiag 
or indezJlag. Thus, a single input or output instruction can, by means of 
a chain of control words, initiate the transmission of a group of records. 
Records that appear in memory in random order are said to be scattered. 

Contro1 words were introduced in the IBM 709 in order to permit 
grouped-record transmission to or from external devices. In the IBM 
7070, control words can be used both for grouped-record transmission and 
for indexing. Both machines establish a chain of control words by plac- 
ing the words in consecutive memory locations. 

Old New 

An example of data ordering is t,he deletion of one record from a group 
of records. Assume that the records A . . . Z are in consecutive mem- 
ory locations. To delete record D from this series, the records E . . . Z 
may be moved to the locations previously occupied by D . . . Y .  The 
use of control words greatly simplifies t,his procedure. The grouped 

The chaining concept has been developed independently by Newell, Shaw, and 
Simon, who have shown many interesting examples of its function on a simulated 
computer. A. NewelI and J. C. Shaw, Programming the Logic Theory Machine, 
Proc. Western Joint Computer Con.., February, 1957, pp. 230-240; A. Newell, J. C. 
Shaw, and H. A. Simon, Ernpirieal Explorations of the Logic Theory Machine, ibid.,  
pp. 218-230; A. Newell and H. A. Simon, The Logic Theory Machine, I R E  Trans. on 
Inform. Theory, IT-2, no. 3, pp. 61-79, September, 1956; J. C. Shaw, A. IrTearell,H. A. 
Simon, and T. O. Ellis, A Command Structure for Complex Information Processing, 
Proc. Western Joint Computer Conf., May, 1958, pp. 119-128. 



records can be in random order in memory with their order established 
by control words in consecutive memory locations. The deletion of 
record D is accomplished by removing its control word from the table of 
control words and moving al1 subsequent contro1 words one space, so 
that they again form a continuous table. Table 11.3 illustrates this 
procedure. Each letter now represents a control word rather than 
the actual record. The insertion of a record in a group of records may 
be handled by reversing this process. 

Some conclusions may be drawn concerning the use of control words in 
data transmission and data ordering. 

1. Since record transmission is replaced by control-word transmission, 
an advantage in storage space and transmission time is achieved. The 
advantage of the procedure is dependent upon the size of the record. 
When a record is only one word long, it  is, of course, more advantageous 
to transmit records directly. 

2. The location of a record and its control word are independent, which 
facilitates data ordering by control-word manipulation. 

3. The use of identica1 control words for both indexing and data trans- 
mission simplifies data-ordering operations. 

4. The records can be scattered in memory. The contro1 words, how- 
ever, have their sequence indicated by the sequence of their memory 
addresses. As a result of this restriction, activity on one record may 
require relocation of severa1 control words for subsequent records. 

The advantage of using control words in data handling is increased 
when control words as well as records can be scattered. If control words 
may be located at  random addresses, a means for specifying their sequence 
in a chain must be provided. A straightforward solution has been found: 
into the contro1 word is introduced a rejill field, which specifies the mem- 
ory address of its successor. The control (or index) word then contains 
three major fields: the value field, the count field, and the refi11 field, as 
shown in Fig. 11.2. 

This solution is particularly attractive since it also completes the 
indexing requirements stated in Table 11.1. It was shown a t  that point 
that an indexing operation required specification of the following: 
index value, increment, count, next initial index value, and next initial 
count. Al1 these quantities except the last two have been specified so far, 
either in instructions or in the contro1 word. The last two quantities 
can now be specified by the refi11 address. This address can refer to a 
second control word, whose value and count field specify the next initial 
setting. In fact, the second control word is the next initial control word. 



The refill field then serves the general purpose of linking a control word 
with the next control word to be used. 

The operations that use the quantities mentioned above were listed in 
Table 11.1 as follows : address modification, incrementing, counting and 
zero testing, replacement of index value and count. Al1 these operations, 
except for the last, have been specified as machine functions. The last 
speraticn can now be restated as: RepLace the index  word by the word at Zts 
reJill address location. The operation as stated makes use of an implied 
address. Therefore, the operation can be part of an ADD TO VALUE, 

COUNT, AND REFILL instruction. This combination of operations is 
meaningful only when the refill operation is conditional. An obvious 
condition is that the count reach zero. Refilling is shown a t  the bottom 
of Fig. 11.5. The instruction repertoire includes other related instruc- 
tions, such as an unconditional operation REFILL. 

The refill operation can also be incorporated in input-output data- 
t ransmission control. The control words comprising a data-transmission 
chain need no longer be in successive memory locations. One control 
word can refer to the next through its refill address. The chain flag 
indicates the termination of the chain and hence stops transmission (see 
also Chap. 12). 

The refill function requires that the refill address be part of the index 
word. When a computer word is not large enough to contain al1 three 
fields, a partial solution can be found by using two adjacent words in 
memory. This procedure has been used in the input-output control of 
the IBM 709. In that machine, a set of consecutive control words may 
be joined to a set a t  another location by in~ert~ing a word having the char- 
acter of the instruction: Continue with the control word at the speci$ed 
location. 

An alternative use of the refill address has been considered. The refill 
address could be used as a branch address rather than as a control-word 
address. With this procedure, whenever the test condition is satisfied, 
a branch is made to a subroutine that takes care of al1 termination and 
initialization procedures. As a minimum, the control word can be 
reloaded, but more elaborate programs can be performed. This pro- 
cedure is more general than the refill operation defined above. The cost 
of this generality, however, is loss in efficiency in the minimum reload 
procedure: a branch as well as a load operation is performed, and each 
control word requires an associated load instruction. In  other words, the 
use of an implied address in the main program is obtained a t  the expense 
of explicit addresses in a subroutine. The ability to permit more elabs- 
rate initialization procedures is often incompatible with the use of the 
control word in different parts of a program. For these and other 
reasons, the refill operation in the 7030 has been preferred to the branch 
procedure or to any of the many variations thereof. 



SEC. 11.1 l ]  INDIRECT AND INDEXING167ADDRESSING IKDIRECT 

I I.II. Indirect Addressing and Indirect Indexing 

Indirect addressing consists in substituting another address for the 
address part of an instruction before that instruction is executed, without 
changing the instruction as stored in memory. A simple and effective 
form of indirect addressing is found in the IBM 709 and severa1 other 
machines, where, under the contro1 of an instruction bit, the operand 
address Al refers to another word in memory where the actual address 
A2 of the fina1 operand is located. I t  is possible to extend indirect addres- 
sing to more than one leve1 by having the address A2 refer to yet another 
word containing address AS, which in turn refers to A*, etc., unti1 the 
process is terminated either by an end mark of some kind or by previous 
specification of the number of levels desired. 

So that it will not be necessary in the 7030 to tie up a bit in every 
instruction for indirect addressing, a separate instruction, LOAD VALUE 

EFFECTIVE, is provided, which serves, in effect, as a prefix to the main 
instruction. The operation is illustrated in Fig. 11.8. Basically this 
instruction fetches an address from memory and places it temporarily 
in an index register. If this address is to be used as an indirect address in 
a subsequent instruction, a zero address part is added to the contents of 
the same index register by the regular address-modification procedure. 

More precisely, the effective address of the LOAD VALUE EFFECTIVE 

instruction is used to fetch a second instruction word from memory. 
If that instruction again has the operation code of LOAD VALUE EFFECTIVE, 

the process is repeated and another instruction word is fetched. The 
indirect-addressing process terminates when the operation code is any- 
thing other than LOAD VALUE EFFECTIVE. The final, indexed operand 
address is stored in an index register, specified by the initial LOAD VALUE 

EFFECTIVE instruction. This procedure permits any number of levels of 
indirec t addressing. 

If the address part of the using instruction is not zero, the process may 
be termed indirect indexing, which gives another degree of flexibility 
over indirect addressing. 

LOAD VALUE EFFECTIVE plays a second role in the 7030. Its operand is 
assumed to be an instruction word, and the operation code of the instruc- 
tion word is examined to determine whether its address part is 18, 19, or 
24 bits long. The address is automatically transformed to a standard 
24-bit length before it  is placed in the value part of the index register. 
Al1 other indexing instructions, such as LOAD VALUE, are assumed to 
refer to index words; they do not provide format conversion, and their 
operands cannot be indexed. 

The particular implementation of indirect addressing in the 7030 sug- 
gests the strong relationship between indirect addressing and additive 
address modification. Both processes modify addresses "on the fly" 



and serve to reduce the number of places where the program must alter 
addresses. In smaller machines, where a separate index adder may not 
be economically justified, it is possible to use indirect addressing instead 

LOAD VALUE 
E F F E C T I V E  (LVE) 

First  level 
(Op. again LVEI 

Second level 
(Op. not LVE)  

A subsequent 
instruction 

FIG.11.8.Indirect addressing and indirect indexing. If A = 0: indirect addressing. 
If A q  # 0: indirect indexing. LOAD VALUE EFFECTIVE ean be repeated automatica111 
any number of times; tuTo levels of indirect addressing are shown; last level is one 
where operation code encountered is something other than IXE. 

of addit'ive address modification and to form and increment the indirect 
addresses with ordinary arithmetical instructions. Fast substitution is 
simpler to implement than fast addition. The function of additive modi- 
fication finds such frequent use, however, that extra equipment for fast 
indexing is fully justified in the larger machines. 



II .I I. Indexing Applications 

The basic indexing formats and functions have been defined in the 
preceding sections. In the rest of this chapter the use of the indexing 
mechanism will be demonstrated; the examples used above to illustrate 
its evolution will be reexamined, and some more elaborate applications 
will be considered. Of the indexing applications, the simple example of 
vector multiplication described earlier will be discussed, and also its 
expansion to matrix multiplication. 

The vector-multiplication program was listed in Table 1 1.2. The same 
program using the reJil1 operation is shown in Table 11.4. Here the 

Instructions 

Preparation g - 2  Load i from io 
q - 1  Load j from i o  

Initial setup -9 Set accumulator to zero 

Vector multiply, inner loop q + l Load cumulative multiplicand from a. in-+-
dexed by i 

9 + 2  Multiply cumulatively by bo indexed by j 

Housekeeping, inner loop g + 3 Increment j by p, count, refill when count 
reaches zero 

9 + 4  Advance i, count, refill when count reaches 
zero, branch to g + l when count does not 
reach zero 

Vector multiply, outer loop q + 5 Store cumulative product a t  co 

Contro1 words Diagrarn o j  veetor dirnensions I 
Contents after executing the inner loop x l 

times : 

Address Index value Count Rejill ,& 
A 
... 

i x n - x  i o  

i o  O n i o  

j ZP n - x  io 

contro1 words are automatically reset. When the program is executed 
repeatedly, it  is sufficient to start a t  the initial setup instruction g. 
When, however, the execution of the program is stopped prematurely 
and must be restarted, the preparatory steps g - 2 and g - 1, which 



load i and j, respectively, are required. Thus loading of i and j should 
always be part of the program-loading procedure. The control words i 
and j are specified by truncated addresses and are located in the index 
registers. The control word i o  has a complete address and can be located 
anywhere in memory. The program illustrates the use of a COUNT, 

BRANCH, AND REFILL instruction. Because the base addresses a0 and bo 
are part of the operand address, the contro1 word i o  can serve as a refill 
word for both i and j. 

The program for matrix multiplication is outlined in Table 11.5 (it 
is also included in the Appendix as a programming example using actual 
instructions). Again the initial setup instruction h would be sufficient 
ordinarily, but preparatory instructions h - 2 and h - 1 are needed to 
permit restart after premature stoppage. 

Al1 three matrixes are assumed to be stored row by row. Index i 
progresses across the rows of matrix A, being advanced by 1 a t  the com- 
bination index-and-branch instruction h + 7. Index i repeats the same 
row p times, being refilled from i o  each time a t  the end of the row. Index 
iois then advanced by n to the next row (at h + I l )  ; the process is 
repeated m times. Similarly, index j progresses down the columns of 
matrix B. j is incremented n times by p (at h + 6), after which jo 
is advanced by 1 to the next column (at h + 10) and used to reload 
j (at h + 2). The incrementation of jo is counted p times and used to 
determine the end of the product row. jo is then refilled from joo to 
start again a t  the beginning of matrix B for the next product row. Index 
k is used to progress row by row through the product matrix C and to 
determine the end of the entire matrix multiplication. 

The program shows that a reasonably complex indexing procedure can 
be described satisfactorily and compactly. The following observations 
may be made: 

1. Only instructions h + 6 and h + 11 contain constants that describe 
the locations and dimensions of the matrixes. Both instructions could 
use a direct address instead of an immediate address, however. In that 
case, the program would be independent of the data. The use of a direct 
address slightly increases execution time. 

2. The constants describing matrix locations and dimensions appear as 
single quantities in instruction and control-word fields. Note that only 
control words ioo, Al1 other joo,and ko  are supplied by the programmer. 
control words are developed during program execution or preliminary 
setup. 

3. The automatic refill is used in the inner loops. The refill operation 
is supplemented by load operations in the outer loops. The refill operation 
is no substitute for preparatory operations required for restart procedures. 



Instructions 

Preparation h - 2  Load ii from ko 
h - l  Load jo from joo 

Initial setup +h Load iofrom i 0 0  

New product row procedure h + 1 Load i from iot 
New vector product h f 2  Load j from jo t 

procedure h + 3  Set accumulator to zero 
Vector multiply, inner loop h + 4 Load cumulative multiplicand c 

from location specified by i 
Multiply cumulatively by operand loca- 

tion specified by j 
Housekeeping, inner loop h + 6 Increment j by p 

h + 7  Advance i, count, r e a l  when count 
reaches zero, branch to h + 4 when 
count does not reach zero 

End of vector multiplication h + 8 Store cumulative product a t  location 
procedure specified by Ic 

h + 9  Increment k by l 
h + 10 Advance jo, count, r e a l  when count reaches 

zero, and branch to h + 2 when count 
does not reach zero 

End of product row h + l 1  Increment ioby n 
procedure h + 12 Reduce count of Ic, refill when count reaches 

zero, and branch to h + l when count 
does not reach zero 

Contro2 words Diagram of matriz dimensz'ons 

Contents after executing the inner loop x 

times for the product matrix element e,,: 


Address Index vaiue Count Refi11 

i a o + r n + x  n - x  i o  

i o  a0 + rn n i o  


i o 0  ao n i o  

j b o + s + x p  p - s  ~ O O 


jo bo + s p - s j00 


k c o + r p + s  m - r  Ico 



II .I 3. Record-handling Applications 

Record-handling techniques have application both in technical com- 
put,ation and in data processing. The examples to be discussed are a 
read-process-write cycle, ordering, and a file-maintenance procedure. 

The use of control words for a simultaneous read-process-write cycle is 
illustrated in Fig. 11.9. Here X-x describes a control word, which, 
by its value and count fields, defines memory area X and which has the 
address x in its refi11 field. Location x contains the next control word 
in the chain, Y-y, defining record Y. Control word 2-x is placed a t  
location y. Because control word X-x is stored a t  locatlion x ,  a ring 

Mernory 

areas 


Locati on Contro1 word Control words used 

x y-Y Read X-x, Y-y, 2-2, X-x, .... 
Y 2-2 Process X-x, Y-y, 2-Z, .... 
z X-x Write X-x,  Y-y,  .... 

F I G .  11.9. Read-process-write chain. 

of three memory areas, X, Y, and 2, is set up in which X is followed by 
Y, Y by 2,and Z again by X. Both record areas and control words may 
be scattered throughout memory. n'ote that, in this notation, an upper 
case letter is used to denote the location of a record area and the cor- 
responding lower-case letter is used to denote the location of the control 
word of the next area in sequence. 

The example of Fig. 11.9 shows the sequence of operat'ions in a read- 
process-write cycle. While a record is being read into area 2,as controlled 
by control word Z-x, processing proceeds with control word Y-y 
using data in area Y, and data from area X are written under control of 
control word X-x. At the conclusion of each of these operations, the 
appropriate control word is refilled, and the areas are thereby cyclically 
permuted in function. 

Instead of a single control word, a chain of n control words could be 
used in reading, while a second chain of n control words is used in pro- 
cessing, and a third chain of n control words is used in writ'ing. To 
further elaborate the example, assume that processing consists of placing 
the n records in s preferred sequence. This sequencing operation was 



described above. Because of the refi11 field, however, the control words 
do not have to be in sequential locations. The advantage of this added 
degree of freedom will be shown in the following examples. 

Assume that the records A . . . Z are scattered throughout memory. 
The associated control words A-a . . . 2-2 establish their order, 
The correct order is here indicated by the alphabetic sequence. I t  is 
desired to delete record H ,  which is out of sequence, and to set its memory 
area aside. The control word H-h of this record is part of the chain 
C-c . . . K-lc shown in the left half of Table 11.6. Interchanging 
the contents of locations d and h establishes a new order, as shown in the 
right part of Table 11.6, and H is no longer part of the sequence. A 
second interchange between d and h would reinsert H. Thus the com- 
plementary nature of insertion and deletion is reflected in the program- 
ming procedure. 

Before After 

Control Contro1 Contro1 
Location word Location word Location word 

If it is desired to insert H in the sequence . . . G, I,J, . . . between 
G and I, the second interchange would be between g and h. Table 11.7 
illustrates this case. 

Because the sequence . . . G, I, J, . . . is part of the sequence 
A . . . Z, the example is equivalent to a sorting operation. The 
sequence . . . G, I,J, . . . may equally well be part of an independent 
sequence, as it  is in file maintenance. 

The interchange of two control words is performed conveniently by a 
SWAP instruction. This instruction interchanges the contents of two 
memory words. The insertion or deletion of a record involves only the 
SWAP of its control word with that of its successor. The insertion and 
deletion of a group of records is equally simple. Consider again the 
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file A . . . 2. It is required to delete the group P . . . R from the file 
shown on the left in Table 11.8. A SWAP instruction is given for loca- 
tions C and r, and so the new order becomes as shown on the right in 
Table 11.8. 

TABLE11.7 RECORDINSERTION 

Before After 

Contro1 Contro1 Contro2 
Location word Location word Location word 

Before After 

Contro1 Control Contro1 
Location, word Location word Location word 

One SWAP instruction deletes the group of records just as one SWAP 

instruction in the previous example deleted a single record. The only 
differences are the addresses of the instruction. The records P . . . R 
form a ring in sequence. (In the previous example, the deleted record H 
could be considered to form a ring in sequence, since its contro1 word was 
stored at its own refi11 location.) The reinsertion of the records P . . . R 



can be performed by swapping again the contents of locations C and r. 
In these examples the sequence of control words is changed by trans- 

mitting entire words. A different approach is to transmit refi11 fields 
only, leaving the rest of the cont,rol word unchanged in memory. This 
method can also be used in many applieations. 

I I .I4. File Maintenance 

A simple case of the updating of a master file from a detail file will be 
discussed. Four tapes are used: the old master tape, the new master 
tape, the detail input tape, and the detail output tape. The detail 
records are processed in a simple input-process-output operation such as 
that described above. The master records are read from the old master 
tape, processed, and written on the new master tape. Reading, writing, 
and processing take place simultaneously. The processing of a master 
record may involve : 

1. S o  activity 
2. Lpdating 
3. Deletion of obsolete records 
4. Insertion of new records 

Master records are read and written in blocks, each block containing a 
group of m records. Memory space is set aside for a total of 4m master 
records and their control words. Yormally, m records are written on 
the new master file while m records are being read from the old master 
file. The remaining 2m record spaces are available for processing. 
These record spaces are divided into two groups: the current spaces and 
the spare spaces. The current record spaces contain records that either 
have been processed and are ready to be written on the new master tape 
or have been read from the old master tape and are available for process- 
ing. The spare record spaces contain no useful record information. The 
number of current and spare spaces varies throughout the processing, 
but their sum remains 2m. 

The control words used in reading and writing and the control words of 
the current records form a ring. The control words for the spare record 
areas also form a ring. Figure 11.10 shows the control words in diagram 
form and illustrates the cases discussed below for m = 8. 

When a record is inactive or requires updating, the number of current 
and spare records remains unchanged. The record is addressed by means 
of its control word. After the processing is completed, the current con- 
trol word is replaced by the next one in order by means of a REFILL 

instruction. The record is ready to be written on the new master tape. 
A count is kept of the records that are ready to be written. When the 
count equals m, a WRITE instruction is issued which is followed by a READ 



- - 

MASTER PROCESSING RING SPARE RING 

Updating or no activity m$ay ;?@ 
2l readyupdatedfor or writinginactive 
k r e a d y  for processing 

9 current Q
7 spare 

\5 ready f o i  processing 

9 current -9 _-i..i
I spare 
1 inserted 

,6 ready for writing 

Excess deletion None available for processing 

correction 

Deletion 

10 spare 
8 deleted 

Insertion 

2 ready for writing 4 spare 
1 deleted 

Excess insertion 
correction -----------------* 

/ \ 

No spare 
8 inserted 

7 ready for writing 
None available for inserting 

/ Z r e a d y  for processing 

16 current 

FIG.11.lo. Control-word diagram for fìle maintenance. 



instruction. The record space of the records just written is used for the 
records to be read. The records just read are available for processing. 

When a record is found to be obsolete and should be deleted, its control 
word is removed from the ring of current control words and inserted in the 
ring of spare control words. Because the control word is deleted, its 
record is not written on the new master tape. The count of records 
ready to be written is not changed. The control word of the next record 
is obtained, and processing continues. 

When there is an excess of deletions, al1 current records may be pro- 
cessed before m records are ready to be written. In  that case the num- 
ber of spare record areas is always larger than m, and a corrective step 
can be taken. This step consists of deleting m control words from the 
spare ring and inserting them in the read-process-write ring. The con- 
trol words are inserted as a block preceding the control words used in 
reading and following those used in writing. An extra READ instruction 
is given, and processing proceeds with the records that have just been 
read. 

When a new record is to be inserted, a control word is removed from 
the ring of spare control words and inserted in the ring of current control 
words. The corresponding record area is then available for the new 
record. After the new record is processed, it is ready to be written. 

When there is an excess of insertions, the spare control word ring may 
have been reduced to zero. A corrective step then should be taken: 
m control words are deleted from the read-process-write ring and used 
as a new spare ring. The m control words deleted are those last used in a 
WRITE operation. Writing is checked for completion. The next time 
that m records are ready to be written, the WRITE instruction is given, 
but the READ instruction is omitted. 

The file-maintenance procedure outlined above illustrates the use of 
insertion and deletion of single records and groups of records. Al1 the 
manipulations described are performed conveniently with control words 
and would require a great dea1 of housekeeping without the refi11 feature. 

II.I5. Subroutine Control 

Another application of control words is in subroutine control. In  
the preceding discussion the control word specified a memory area that  
normally would contain data. The memory area might also contain 
instructions, however. A subroutine may be thought of as a record. 

As an illustration, consider the use of exception subroutines, which are 
stored on tape, drum, or disk and are called in when the associated 
exceptions arise. The control word is used in the READ instruction; it 
can subsequently be used for address modification in the BRANCH inst'ruc-
tion that refers to the subroutine and in the instruction that stores the 



instruction-counter contents. The subroutines, therefore, csn be inserted 
conveniently in a main sequence of instructions. 

11.l6. Concl usion 

The preceding discussion has shown the application of control words in 
address modification and in record handling. Both indexing and data- 
tranumissisn techniques make it  desirable to have an index zlalzle, count, 
and re$lt facility. The three fields in the control word and the associated 
machine functions satisfy these requirements. The control words pro- 
vide substantial saving in program space and increase in machine speed. 
They simplify programming of housekeeping operations. 

Contro1 words do not introduce entirely new functions, since their 
operation can be simulated on any stored-program computer. & m 7  the 
int,roduction of count and reJiEl is only a second-order improvement as 
compared with the first-order improvement of address modification 
through indexing. Control-word operation is, however, so much sim- 
pler than its simulation that severa1 otherwise impractical methods of 
record control have now become feasible. 

The indexing instructions have been described as they appear in the 
IBM 7030. Though elements of the system discussed here have been 
used in other machines, the 7030 control-word system as a whole is new, 
for the effectiveness of these techniques depends largely on the combina- 
tion of al1 the features. 



Chapter I2 

INPUT-OUTPUT CONTROL 
by W. Buchholz 

12.1. A Generalized Approach to Connecting Input-Output and 
External Storage 

One of the drawbacks of early computers was the primitive nature of 
their input and output equipment. A small amount of data might be 
entered on paper tape, computation would then proceed, and results 
would finally be printed on a typewriter. Subsequent development of 
input-output and external storage devices has given us not only faster 
equipment but also a greater variety. Magnetic tape, drums, and disks 
provide external storage to supplement the interna1 memory. Card 
readers, card punches, and mechanical line printers have become com- 
monplace items in most installations. Fast cathode-ray-tube printers, 
displays, and plotters provide alternative output means. Phone lines 
and inquiry stations allow direct communication with computers. 
Analog-digital conversion equipment permits digital computers to be 
used to control continuously variable processes. 

The list of input-output equipment may be expected to grow, and, as 
it  grow-s, a cornputing installation will come to be characterized more by 
the array of external units than by the nature of the centra1 computer. 
It is, therefore, desirable to avoid restrictions on the number and kinds of 
units that can be connected to a general-purpose computer. To achieve 
sufficient generality, the design of the 7030 input-output system followed 
these principles : 

1. A large number of logically identica1 and independently operable 
input-output channels should be provided. 

2. The input-output instructions should be independent of the nature 
of the units they control. They should identify a channel and the con- 
nected input-output unit only by addresses. 

3. As a corollary, there should be no equipment in the computer that is 
179 



peculiar to any kind of Pnput-output unit. Al1 control circuits peculiar 
to a given unit are required to be part of the control box for that 
unit . 

4. The operat'ion of a channel should be independent of t'he speed of 
the input-output unit connected to it up to the maximum speed for which 
the channel is designed. 

Because of the enormous range of speeds encountered (from O to 
about 10,000,000 bits per second), i t  was found desirable to provide more 
than one kind of channel, so as to cover the speed range economically. 
The differences lie niainly in the number of bits transmitted in parallel 
and the number of channels sharing common equipment. The discussion 
here will be concerned only with the basic channels, which can transmit 
8 information bits in parallel a t  a rate of over 500,000 bits a second. 
More parallelism is needed, with present technology, to go to much higher 
speeds; serial-by-bit transmission may be desired to reduce the cost per 
channel when a large number of quite slow units are to be connected. 
It should be noted that the variations are associated only with speed 
ranges, not with functional differeiices. 

The execution of input-output instructions takes place in a portion of 
the computer called the exchange. The exchange accepts input-output 
instructions from the instruction-preparation section of the computer and 
executes them independently of the rest of the computer. The exchange 
also contains common control equipment which is used in time-shared 
fashion by al1 channels operating simultaneously. The exchange is 
described in Chap. 16. The present chapter is concerned mostly with the 
instruction logic for operating any one channel. 

12.2. Input-Output Instructions 

Four basic instructions make up almost the entire repertoire for per- 
forming any kind of input-outlput operation: WRITE, READ,COSTROL, 

LOCATE. 
WRITE causes a stream of data from the computer memory to be trans- 

mitted to an external unit, there to be written oli a storage or recording 
medium. Conversely, READ initiates the flow to the computer memory 
of data that have been read on a storage or recording medium a t  an 
external unit. The medium may be a physical medium such as tape, 
cards, or paper; i t  may also be a phone line or the memory of another 
computer, which may be connected to this computer as if it were an input- 
output unit. (The terms writing and reading are used here in such a way 
as to describe the data flow with respect to the input-output unit. To 
avoid confusion, the different terms storing and jetching are used to 
describe the data flow with respect to interna1 memory.) 
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Each WRITE or READ instruction contains two addresses (Fig. 12.1): 
the channel address identifying the channel to which the desired unit 
is connected, and the control-word address specifying the memory location 
where additional information for executing the instruction is to be found 
in the form of a control word. 

CONTROL and LOCATE resemble WRITE in that bits are transmitted to the 
external unit, but these bits are not data to be recorded. In CONTROL 

the bits, which are obtained from the second-address part of the instruc- 
tion itself, are a code to direct the unit to perform specified functions 
other than writing or reading. In LOCATE the bits constitute a secondary 
selection address which is needed by some kinds of external units. 

Channel address Second address Operation 

l l 
Control word address WRITE 
Control word address READ with Or w i t h o ~ t  
Control code CONTROL end of operation 
Selection address LOCATE interrupt 
(Not used) RELEASE 1
Control word address COPY CONTROL WORD 

FIG.12.1. Principal parts of input-output instructions. 

There are two more instructions, COPY CONTROL WORD and RELEASE, 

which perform certain auxiliary functions in the exchange. Their use is 
infrequent, and they will not be considered further. 

12.3. Defining the Memory Area 

Basically, the control word (see Fig. 12.2, also Chap. 11) defines a 
continuous area in memory, which is the source of the data stream during 
writing or the sink for the data stream during reading. The location of 
the area is defined by the data-word address, which specifies the address of 
the first word, and the size of the area is defined by the count, mhich gives 
the total number of words in the area. (For simplicity, input-output 
operations ean address only fu11 memory words of 64 bits, and memory 
areas can be defined only as multiples of fu11 words.) The first word is 
always the word at  the lowest address. Writing or reading starts a t  that 
address and, unless otherwise specified, steps through progressively higher 
addresses to the end of the area, as defined by the count. 

Each control word can define only one continuous memory area, but 
severa1 control words can be chained together so that a single writing or 
reading operation can proceed through more than one continuous area. 
For this purpose, each control word contains a refi11 address, which gives 
the location of the next control word to be used, and a chain flag, which 



defines the extent of the chain. A chain flag of l permits writing or 
reading to continue automatically beyond the atrea of the current control 
word to the next area specified indirectly by the refill address; a chain 
flag of O stops the process a t  the end of the current area regardless of 
what is in the refill address. 

Thus, a chain of control words defines a memory area in the larger 
sense in which successive words are not necessarily at  consecutively 
numbered addresses. Because the same chain of words can be used as 
control words during reading, as index words during computing, and 

FIG. 12.2. Contro1 word. 

Count 

again as control words during writing, powerful procedures are available 
for complex record handling, as described in Chap. I l .  

Refill 

12.4. Writing and Readins 

When a WRITE or READ instruction is given, the unit attached to the 
channel specified is started and data are transferred between that unit 
and the memory area defined by the specified control word (or chain of 
control words). Xormally, a single block of data is t,ransferred each time 
an inst'ruction is given; a block of data is defined for each type of unit as 
the amount of inf~rmat~ion recorded in the interval between adjacent 
starting and stopping points of the recording medium. 

The length of the block depends on the type of unit used. I t  rnay be 
the contents of one punched card, a line of printing, or tlhe information 
between two consecutive gaps on magiietic tape. In some unit4s the 
length of each block rnay be fixed by the design of t he unit (card reader or 
line printer), but in other units the block length rnay be left variable 
(magnetic tape). Again, the length of a block rnay correspond to the 
natura1 size of one unit record; it rnay be set t80 correspond to a group of 
such records (e.g., for greater eficiency on magnetic tape) ; or it rnay 
occasionally be neither. 

Thus, the size of the memory area is defined by the control word, and 
the length of the block is often, but not always, defined by the unit. 
One can distinguish three cases: 

l. The block length is not defined, and the operation terminates when 
the end of the memory area is reached (including any chaining). For 
example, in writing on magnetic tape, the tape uiiit stops and creates an 
interblock gap whenever the last memory address of the last control word 
in the chain is reached. (Writing tape is different from reading tape, 
where the block size is defined by the previously written interblock gap.) 



2. The block is shorter than or equa1 in length to the defined memory 
area, and the operation stops a t  the end of the block. The rest of the 
memory area, if any, is ignored. 

3. The block is longer than the defiiied memory area, and the data 
transfer ceases when the end of the memory area is reached. Since 
the unit cannot stop in the middle of a block, it continues without trans- 
ferring any data until the end of the block. 

What has been described so far is single-block operation. For addi- 
tional flexibility, multiple-block operation is also provided in the 7030 
system. It is specified by setting a multiple JLag in the control word to 1. 
In  the multiple mode, when the end of a block is reached, the WRITE or 
READ operation is allowed to continue by starting a new block; the 
operation is finally terminated when the end of the defined memory 
area is reached. The multiple mode is generally equivalent to a sequence 
of WRITE or READ instructions in the single mode, except that the computer 
program is not iiiterrupted until the sequence is finished. (This advan- 
tage is gained a t  the expense of more complex exception handling.) 

I t  may be noted that the memory area defined by a chain of control 
words cannot be exceeded regardless of the mode. A properly defined set 
of control words thus provides protection against accidental erasures 
outside the memory area assigned to a specific input-output operation, 
such as might otherwise be caused by reading blocks longer than expected. 

I 2.5. Controlling and Locating 

Most input-output units require certain programmable control func- 
tions in addition to writiiig and reading, such as rewinding tape, selecting 
different operating modes, turiiing warning lights on and off, or sounding a 
gong. Instead of numerous highly specialized instructions for each of 
these functions, some of which might have to have different meanings for 
different units, a single COSTROL instruction is used here for the sake of 
generality. This instruction causes a code to be sent to the external 
unit, which interprets the code to perform the desired operation. 

Thus COKTROL has only a single meaning in the computer. The 
specialized functions are defined separately for each external unit and 
form part of its design specifications. They may range from an elaborate 
set of control functions for some high-performance units to none a t  al1 
for rather primitive devices. The input-output channels remain genera1 
in function and need not be altered as new devices are attached or as the 
mix of units is changed. 

The control code is placed in the secoiid address of the instruction, 
in the manner of an immediate address, and there is no reference to a 
memory location. The first address of the instruction specifies the chan- 
nel, as before (Fig. 12.1). 



The LOCATE instruction resembles CONTROL in al1 respects except that 
the bits sent to the unit are interpreted by the unit as a secondary selec- 
tion address rather than a secondary operation code. Examples of the 
use of secondary addresses are: selecting the desired one of severa1 tape 
units connected to a single chaiinel; directing the access mechanism of a 
disk file to a desired position. The selection addresses are limited to a 
rnaximulr, of eighteen bits. 

12.6. An Alternative Approach 

The similarity between the above CONTROL and LOCATE operations 
suggests the possibility of combining them into a single control operation. 
The first 8-bit byte of the control data would become the secondary 
operation code; it could specify whether additional bytes containing 
address inforination were to follow. The number of bytes needed would 
be determined by the external unit. 

The restriction on selection addresses, which are limited in length by 
the instruction format, can be removed by changing from immediate 
addressing to direct or eveii indirect addressing. With direct addressing, 
the second address of the new control instruction would specify a 64-bit 
memory word, part or al1 of mhich could be sent to the unit as desired. 
An even more genera1 system is provided by indirect addressing, where the 
address specifies a control word which defines the address and the amount 
of information, as in WRITE. Although it would require an extra memory 
word and access, indirect addressing would have the advantage of sim- 
plicity, since this version of control would be executed in a manner iden- 
tical with WRITE. 

A second generalization would be to provide the inverse of this control 
operation, which we shall call sense. This sense operation would be a 
request to the external unit to send back various status indications, such 
as manual switch settings and reports of termination or error conditions. 
Sense would be t'reated like READ if indirect addressing were used, the 
status bits being stored in a memory area defined by a control word. 

This alternative set of control and sense operations has the advantage of 
symmetry, simplicity, and flexibility. It was not incorporated in the 
7030, but the scheme has since been adoptled in other input-output 
systems. 

12.7. Program hterruptions 

One of the important functions of a program-interrupt system (Chap. 
10) is to resynchronize the computer program with the external opera- 
tions, which, having been initiated by the program, are completed inde- 
pendently. An equally important function is to request program atten- 
tion to a process that is initiated externally, by an operator for example. 



After giving an input-output instruction, the program is not allowed 
to proceed unti1 the exchange has accepted or rejected the instruction. 
If the exchange finds that the desired unit is not ready to operate, or the 
channel is already in use from a previous instruction, or the instruction is 
incorrect, the exchange will reject the instruction by turning on an indi- 
cator and interrupting the program. Otherwise the instruction is 
accepted for execution by the exchange, and the program is released to 
proceed with the next instruction in sequence. The program rnay at  
any time initiate an input-output operation for another channel that is 
not busy. Any number of such operations rnay be accepted and pro- 
cessed by the exchange independently and simultaneously, up to the 
maximum traffic-handling ability of the exchange. 

Thus, the exchange and the computer proceed independently once an 
input-output operation has been started. At the end of an input-output 
operation, the program is again interrupted. The channel address of the 
particular channel whose operation has been completed is supplied to the 
program; indicators show whether the operation was completed success- 
fully or whether some unusual condition was encountered. Thus a pro- 
gram, which rnay have been waiting for the input-output operation to 
finish, can be resumed at  the earliest opportunity without the need for 
repeated testing of the indicators. The unit that'was stopped rnay be 
restarted by the program with a minimum of delay. The interrupt sys- 
tem, therefore, provides an effective method for bringing the program 
and the independently operable input-output units back into step at  
intervals. 

An alternative mode exists whereby program interruption can be pre- 
vented when the operation ended normally, with interruption occurring 
only for the exceptions. Another mode suppresses al1 interruptions, so 
that a supervisory program, for example, rnay initiate a special input- 
output sequence before having to pay attention to a unit that has just 
completed its cycle. Additional flexibility is gained by writing the pro- 
gram to accept interruptions but storing the indications in a queue for 
later use if the interrupting unit is not to be given top priority (see Chap. 
13 for a more extended discussion of these subjects). 

A third type of interruption from an external source is a request to the 
program to issue an input-output instruction when no such operation has 
been in progress. This interruption is called channel signal. Frequently, 
the source is a human operator. A channel signal rnay be issued when the 
operator has loaded a unit with fresh materia1 (tape, paper, cards) and 
pressed the start button. An operator rnay be ready to enter information 
from a keyboard; if a READ instruction is not already waiting for the 
information, the operator may, in effect, request such an instruction by 
pressing a button that causes a channel signal to be issued. The channel 



signal does not itself initiate any operation in the computer, and a suita- 
ble program must be available in the computer; so the programmer has 
fu11 freedom tlo interpret such signals in any manner, including the option 
to ignore them when they are not appropriate. l 

Another use of channel signal is as a second-level, end-of-operation 
interrupt signal. Some common control units perrnit two or more input- 
output units, attached to the same control unit and channel, to perform 
simultaneous operations, so long as only one operation involves data 
transmission over the channel. The secondary operations that do not 
require the channel (such as rewinding tape or locating a new position for 
an access arm on a disk file) are often of long duration compared with the 
primary operations that do occupy the channel (such as reading or writ- 
ing). Channel signal then indicat'es the completion of the secondary 
operation. The two uses of channel signal are not unrelated. Even 
operator interventions can be considered to be under indirect program 
control, since instructions from the program to the operator are either 
implied or explicitly given, if human intervention is to result in meaning- 
fu1 actions by the program. The main difference lies in the less predicta- 
ble waiting time and the surely erratic behavior of human beings. 

In  summary, channel signal is the computer's interna1 telephone bell. 
It summons the program to attend to the channel whose bell has rung. 
(To be quite fair, the computer, in turn, is allowed to sound a gong on the 
console to summon an operator.) 

12.8. Buffering 

B u f e r  storage external to the main memory is used in many com- 
p u t e r ~  to mattch data transmission rates and to minimize delays. The 
7030 system, however, makes no use of external buffers when it is pos- 
sible to transmit directly between the recording medium and the memory 
in ~equent~ial The card-reader- and card-punch-contro1 units do fashion. 
contain buffers, because of a need to transpose bits; the reader and punch 
happen to feed cards row by row, whereas it is more desirable to transmit 
the data to and from memory in column-by-column form. Similarly, 
the chain printer used in the 7030 system, even though seria1 in operation, 
is designed so that the same bytes must be presented repeatedly and not 
in the sequence in which they appear on paper. Although programs could 
be written to make the necessary transformations inside the computer, it 
seemed that special buffer storage devices could do these highly repetitive 

l One exception occurs whm the computer is to be loaded with its initial program 
and a meaningful program cannot be assumed to exist in memory already. Channel 
signal is then used to start a built-in sequence to read one block from the unit that 
generated the signal. The initial program-loading sequence becomes inoperative 
once used. 



chores more effectively. The buffers make the devices appear to the 
computer as if they were seria1 in operation. 

Devices that are inherently serial, such as magnetic tape units, disk 
files, and typewriters, have no separate buffer storage. (We must dis- 
tinguish buffer storage, which holds m e  or more complete blocks of data, 
from registers capable of temporarily holding oiie or more bytes in the 
contro1 unit to smooth out the data flow and perform a small-scale 
buffering function "on the fly." As the term is used here, a buffer 
receives a complete block of data from oiie device and then transmits the 
block to another device, usually a t  a different speed. A buffer permits 
either device to stop between blocks and delay transmission of the next 
block indefinitely.) Since the introduction of buffer storage represented 
significant progress a t  one stage in the development of computers, its 
omission in the 7030, with the exceptions mentioned above, calls for a 
word of explanation. 

The simplest technique, both in terms of equipment and programming, 
is unbuffered, single-channel operation. When an unbuffered computer 
issues an instruction to read or write, the input-output unit is started and 
data are then transmitted while the computer is waiting. The computer 
cannot continue until data transmission is ended. When input-out- 
put activity is a t  al1 high, long waiting periods greatly reduce over-al1 
performance. 

Buffered, single-channel operation was the next step. When trans- 
mission between a unit and its buffer is much slower than transmission 
between the buffer and main memory, it becomes possible to reduce the 
waiting time of the computer by the difference in transmission times and by 
omission of the start-up time of the unit. There is still an irreducible 
m-aiting time for the computer: the time for transmitting data between 
buff er and memory. 

In applications where computing time is less than input-output time, 
the waiting time of the input-output unit becomes important. When only 
a single buffer is provided, the unit must wait until data transfer between 
buffer and memory has been completed. This wait includes the 
unavoidable delays after completion of the input-output cycle before the 
program can initiate the transfer, as well as the transfer time. By 
doubling the buffer storage area and alternating between the areas, one 
can avoid such delays in the operation of the input-output unit. 

The 7030 (like several earlier computers) uses buffered, multiple- 
c hannel operation without requiring external buff ers. Buffering is 
accomplished by transmitting data directly between the unit and memory 
over one of several input-output channels at  whatever rate is required by 
the unit. Each channel operates independently of the computer and of 
the other channels. This may be termed buffering in rnemory. The 



interna1 memory acts as one large buffer for al1 channels. Its use is time- 
shared automatically among the computer and the input-output channels 
by allocating memory cycles to each device when needed. If more than 
one device demands attention, each is served in turn, with the highest 
priority assigned to the channel with the fastest input-output unit. 

There are a number of advantages to this arrangement. An obvious 
advantage is a considerable reduction in equipment as compased with 
having a separate buffer on each channel, a saving which is partially offset 
by the prorated cost of the main memory areas serving as buffers. The 
size of the buffer area in main memory can be adjusted to the balance 
between cost and performance desired for each application, where the 
size of external buffers must be fixed in advance. Buffering in memory 
takes less rea1 computer time. I t  is true that external buffers could be 
designed so t'hat the number of memory cycles taken to transfer data 
between buffer and memory would be the same as would be required to 
txansfer data dire~t~ly between unit and memory; but, with buffering 
in memory, the memory cycles are sandwiched between memory cycles 
taken by the computer, and, since the computer does not normally use 
every cycle, a significant fraction of the data-transfer cycles is "free" 
and does not delay the computation. 

Perhaps the most significant gain is the more direct contro1 that the 
program can exercise. When double buffering is used externally for 
greater efficiency, the input-output unit runs ahead (on reading) or behind 
(on writing) by one block with respect to the program. As a result, if an 
error or other exception condition occurs, recovery is more difficult. 
With buffering in memory, data in memory always correspond to the 
block currently being read or written, and the pipeline effect is avoided. 
Operator intervention can be simplified. Moreover, the programmer has 
the option of any buffering scheme he would care to use, including no 
buffering at all. When speed of program executioii is not important, the 
simplicity of programming an unbuffered operation without overlap is 
very appealing. This need not mean that the computer is used ineffi- 
ciently. Since many channels are available, more than one such program 
can be run concurrently so that the overlap occurs between operations 
belonging to different programs, instead of between different operations 
in the same program. 

12.9. Interface 

Input-output units, regardless of type, must be connected to their 
exchange channels in the same manner, elect,rically and mechsnically, if 
the channels are to be identica1 in design. This connection has been 
called the interface. If a common connection technique is used, any 
mixture of input-output units can be attached to a computer, the array 



of units being determined by the needs of the specific installation. This 
is shown schematically in Fig. 12.3. 

A further requirement of the interface is that it permit the connecting 
together of any two units that can logically operate together (Fig. 12.4). 
A tape unit and its control unit may be connected to the computer, via an 
exchange channel, or they may be connected to a card reader and its 
control for off-line card-t'o-tape conversion, or to a printer and its control 
for off-line tape-operated printing. The same card reader or printer 
could, in turn, have been connected to exchange channels for on-line 
operation.' Figure 12.4also indicates two computers connected together 
via exchange channels and a phone line. There is no inherent master- 
slave relationship ;either unit can initiat'e data transfer. 

Memory 
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FIG.12.3. Input-output connections to computer. 

I t  is not possible to connect two tape units to copy data from one to 
the other; the absence of buffer storage in the tape-contro1 unit prevents 
their synchronization. Kor does it make sense to connect a card punch 
to a printer. Also not shown is any direct connection between two 
exchange channels. Technical difficulties prevented this; i t  would have 
required an otherwise superfluous register in each channel. A junction 
box containing a register is needed to tie together the channels of physi- 
cally adjacent computers. 

A somewhat similar technique was used in the IBM 702 and 705 systems to per- 
mit card readers, punches, and printers to be connected either on-line or off-line. 
This was done, however, by providing two different connections on the control unit, 
one for the computer and another for a tape unit. Also the approach was very much 
tape-oriented. The control units for the reader, punch, and printer each contained a 
complete set of tape control circuits. The present approach is based on a strict 
separation of functions. 



The interface contains eighteen data lines (eight information-bit 
lines and a parity-bit line in each direction), a timing line, and severa1 
more lines corresponding to t>he instructions and indications referred to 
earlier in this chapter. As mentioned in connection with the CONTROL 

and LOCATE instructions, extensive use is made of addresses and codes 
transmitted over the data lines, instead of providing separate lines with 
more restricted meanings. Such generality provides muranee that 
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FIG.12.4. Types of connections. 

improved or newly designed units can be connected to the same channels 
without changing the computer or its exchange. 

To achieve high performance, i t  is very desirable to require a mini- 
mum of operator intervention in the computer and in input-output units 
that are essentially automatic in operation. Operator intervention 
implies waits and errors, both of which serve to reduce system perform- 
ance. Thus printers, card readers, and tape units have as few manual 
controls as possible; control is exercised entirely by the centra1 stored 
program, with no plugboards or set-up switches on most of the external 
units. By contrast, typewriter keyboards and consoles, which have 
meaning only as they are manually operated, are equipped with a wealth 
of buttons and switches, but even those do not control computer 
functions, except as interpreted by a program. 

Ignoring power on-off switches, al1 input-output units can be operated 
with just two buttons, labeled start and stop or with some equivalent 
names. Starl places the previously loaded recording medium into oper- 
ating position, checks al1 interlocks, turns on ft ready eondition, and sends 
a channel signal to the program. The unit is then under fu11 computer 
control. Stop allows the operator to stop the device and turn off ready; 
the computer can then no longer operate the unit unti1 start is pressed 



again. Thus start and stop provide an interlock between the operator 
and the computer by which the operator can exercise a minimum of 
necessary supervision. A separate signal button may be provided where 
an automatic channel signal after readying a unit is not desired. 

Additional buttons are encouraged on individua1 units only when 
equivalent functions cannot be provided as well or better by the stored 
program. On some completely automatic units, such as disk files, even 
the start-stop pair of buttons is not needed. 

Operating controls are to be clearly distinguished from the multitude 
of controls that may be needed by maintenance personnel. Maintenance 
controls are strictly separated from operating controls, and they are 
generally located where their use for norma1 operation can be discouraged. 



MULTIPROGRAMMING 
by E. F. Codd, E. S. Lowry, E. McDonough, and C. A. Scalzi 

13.1. Introduction 

In recent years there has been a trend in computer design toward 
increased use of concurrent operation, with the prime aim of allowing 
more of the component units of a computer systiem tio be kept in produc- 
tive use more of the time. Two forms of concurrency have clearly 
emerged. The first, which we shall call 2ocal concurrency, consists in 
overlapping the execution of an instruction with that of one or more of 
its immediate neighbors in the instruction stream. 

This form of concurrency was present in a very early machine, the 
IBM Selectizle Sequence Electronic Calculator (SSEC),whic h was capable 
of working on three neighboring instructions simultaneously. Such con- 
currency was later abandoned in the von Neumann-type machines, such 
as the IBM 701. Xow tlhat we haveonceagainreachedastageinwhich 
the logica1 elements are much faster than the memories, tlhe need for this 
type of concurrency has returned, and, in fact, the 7030 computer is 
capable of working on as many as eleven neighboring instructions 
simultaneously. 

The second form, which we shall call nonlocal concurrency, provides for 
simultaneous execution of instructions which need not be neighbors in an 
instruction stream but which may belong to entirely separate and unre- 
lated programs. It is this form of coneurrency upon which we wish to 
focus attention in this chapter. 

A computer system, in order to exhibit nonlocal concurrency, must 
possess a number of connected facilities, each capable of operating simul- 
taneously (and, except for memory references, independently) on pro- 
grams that need not be selated to one another. A facility rnay be an 

Note: The materia1 in this chapter has previously been published by the same 
authors as: Multiprogramming Stretch: Feasibility Considerations, Communs. ACM., 
vol. 2, no. 11, pp. 13-17, Sovember, 1959. 
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input-output unit, an external storage unit, an arithmetic unit, a logic 
unit, or some assemblage of these units. In an extreme case each facility 
is a complete computer itself. 

The 7030 is a multiple-facility system. The following facilities are 
capable of simultaneous operati011 on programs that need i-iot be related: 

1. One (or more) cent'ral processing units 
2. Each inpui-output channel of the exchange 
3. Each disk-storage access mechanism 
4. The read-write channel of the high-speed disk synchronizer 

(The several memory units in a 7030 system are no% considered separate 
facilities, even though they may work momentarily on unrelated pro- 
grams, because they behave, on the average, as a single larger unit of 
higher speed.) 

The multiple-facility computing system bears a dose resemblance to a 
job shop, although the analogy can be taken too far. Just as the jobs to 
be processed in a job shop are split up intlo tasks that can be handled con- 
currently by the facilities available, so programs can be subdivided into 
such tasks. At any instant the tasks being executed simultaneously may 
belong al1 to one program or to different programs. The procedure 
of running concurrently tasks that belong to different (perhaps totally 
unrelated) programs has a number of objectives: (1) to achieve a more 
balanced loading of the facilities than would be possible if al1 the tasks 
belonged to a single program; (2) to achieve a specified real-time response 
in a situation in which messages, transactions, etc., are to be processed 
on-line; (3) to expedite and simplify debugging and certain types of 
problem solving by making it economically feasible for the programmer 
to use a console for direct communication with and alteration of his 
program. 

13.2. M~ l t i~ rogrammingRequirements 

Severa1 problems arise when concurrent execution is attempted of 
programs sharing a common memory. For example, it is almost certain 
that sooner or later, unless special measures are taken, one program will 
make an unwanted modification in another as a result of a programmer's 
blunder. Then again, when an unexpected event occurs, the handling of 
it is not merely a matter of deciding whether i t  was due to machine mal- 
function, programming blunder, or operator error. It becomes necessary 
to know which of the several programs may have been adversely affected 
and which (if any) was responsihle. 

Such problems make it desirable for a multiprogramming system, 
if it is to be generally accepted and used, to satisfy the following six 
conditions : 



1. Independence of preparation. The multiprogramming scheme 
should permit programs to be independently written and compiled. This 
is particularly important if the programs are not related to one another. 
The question of which programs are to be coexecuted should not be pre- 
judged even a t  the compiling stage. 

2. M i n i m u m  information from programmer. The programmer should 
not be ropirod to provide any additiorial inforrnation about his program 
for i t  to  be run successfully in the multiprogrammed mode. On the other 
hand, he should be perniitted to supply extra information (such as 
expected execution time if run alone) to enable the multiprogramming 
system to run the program more economically than would be possible 
without this information. 

3. M a x i m u m  control by programmer. I t  may be necessary in a multi- 
programming scheme to place certain of the machine's features beyond 
the programmer's direct influence (for example, the time clock and the 
interval timer in the 7030). This reduction in direct contro1 by the prob- 
lem programmer must not only be held to an absolute minimum but must 
also result in no reduction in the effettive logica1 power available to the 
programmer. 

4. Noninterference. S o  program should be allowed to introduce 
error or undue delay into any other program. Causes of undue delay 
include a program that gets stuck in a loop and the fajlure of an operator 
t o  complete a requested nlanual operation within a reasonable time. 

5 .  Automatic supert~ision. The multiprogramming scheme must 
assume the burden of the added operating complexity. Thus instruc- 
tions for handling cards, tapes, and forms for printing shoiild be given 
by the multiprogramming system. Similarly, machine malfunctions, 
programming errors, and operator mistakes should be reported by the 
multiprogramming system in a standard manner to the person 
responsible. Again, al1 routine scheduling should be handled auto-
matically by the system in such a way that the supervisory staff can make 
coarse or fine adjustments a t  will. Further responsibilities of the system 
include accounting for the machine time consumed by each job and 
making any time studies required for purposes of operation or 
maintenance. 

6. Flexible allocation of space and time. Allocation of space in core 
memory and disk storage, assignment of input-output units, and control 
of time-sharing should be based upon the needs of the programs being 
executed (and not upon some rigid subdivision of the machine). 

To implement by built-in equipment al1 the logic required to satisfy 
the above six conditions would be far too cumbersome and expensive. 
Further, the methods used to meet certain of these requirements (par- 



ticularly the automatic-scheduling requirement) must be able to be 
varied from user to user because of varying objectives. 

On the other hand, too extensive a use of programmed logic in a multi- 
programming scheme can easily prove self-defeating, because the time 
taken by the machine to execute the multiprogramming program may 
offset the gain from concurrent execution of the problem programs. 
However, the raw speed and logica1 dexterity of the 7030 are such that it 
is practical to employ quite sophisticated programmed logic. 

In the 7030, therefore, the conditions for effective multiprogramming 
are met by a carefully balanced combination of built-in and programmed 
logic. 

I3.3. 7030 Features That Assist Multiprosramming 

First, let us consider four major features, built into the 7030 equip-
ment, that facilitate multiprogramming: (1 )  the program-interrupt 
system, (2) the interpretive console, (3) the address-monitoring scheme, 
and (4) the clocks. 

Program-interrupt System 

This system is described in some detail in Chap. 10. Briefly, the 
system permits interruption of a sequence of instructions whenever the 
following four conditions are al1 satisfied : 

1. The interrupt system is enabled. 
2. Ko futher activity is to take place on the current instruction. 
3. An indicator bit is on. 
4. The corresponding mask bit is on. 

The indicators reflect a wide variety of machine and program con-
ditions, which may be classified into the following six types: 

1. Attention requests from input-output units, the intervab timer, or 
any other centra1 processing units that may be attached to the system 

2. Data exceptions, such as data flags, zero divisors, or negative 
operands in square-root operations 

3. Result exceptions, such as lost carries, partial fields, or floating- 
point exponents beyond certain ranges 

4. Instruction exceptions, such as instructions that should not or can- 
not be completed or should signal when they are completed 

5 .  Entries to interpretive routines 
6. Machine malfunctions 

When severa1 problem programs are being executed concurrently, 
certain of these conditions are of private concern to the particular pro- 
gram that caused their occurrence. Other conditions, particularly 



types 1 and 6, are of general concern. Each of the indicators for con- 
ditions of private concern has a variable mask bit that allows the current 
program to choose between suppressing and accepting interruption for 
the respective condition. On the other hand, each of the indicators for 
conditions of general concern has a fixed mask bit, permanently set in the 
on  position. This feature, combined with appropriate measures for 
controlling the disabling of the entire interrupt system, makes it virtually 
impossible for an interruption of general concern to be suppressed and 
lost. 

Another aspect of the interrupt system that is of importance in multi- 
programming is the interrupt table. When an interruption is taken, 
contro1 is passed (without any change in the contents of the instruction 
counter) to one of the instructions in an interrupt table. The base 
address of this table is variable; so several such tables may exist simul- 
taneously in memory (for example, one table for each problem program), 
but only one is active a t  a time. The relative location within the active 
table that supplies the interjected instruction is determined by the indi- 
cator (and hence by t,he particular condition) causing interruption. 

Exploitation of t4his interrupt system depends upon programmed inter- 
rupt procedures. This aspect will be taken up when we dea1 with pro- 
grammed logic for multiprogramming. 

Interpretiw Console 

It has been customary in general-purpose computers to provide a single 
console a t  which an operator can exercise sweeping powers over the whole 
machine. For example, by merely depressing the stop button the opera- 
tor has been able to bring the entire activity of the machine to a halt. 
The norma1 reqiiirement in multiprogramming, on the other hand, is to 
communicate with a particular program and a t  the same time allow al1 
other programs t,o proceed. Pursuing the same example, we now desire 
to stop a program rather than stop the machine. 

For this reason and also because it is required that several consoles 
with different functions be concurrently operable, the operator's console 
of the 7030 is not directly connected to the central processing unit. 
Instead, it is treated as an input-output device. I ts  switches represent 
so many bits of input and its lights so many bits of outputl. Ko fixed 
meaning is att]ached to either. By means of a console-defining routine 
one can attach whatever meaning one pleases to these switthes and lights. 

Address Monitoring 

Each reference by the central processing unit to memory is checked to 
see whether the effective address falls either within a certain fixed area or 
within a second variable area. If the effective address falls within one of 



these two areas, which are to be protected, the reference is suppressed 
and an interruption occurs. The boundaries of the variable area are 
specified by two addresses (the upper and lower boundaries) stored within 
the fixed area. These address boundaries can be changed only if the 
interrupt system is disabled. 

This monitoring scheme allows any number of programs sharing 
memory to be protected from one another effectively. At any instant, 
the central processing unit is servicing only one program, logically 
speaking. Suppose this is a problem program P. The address bound- 
aries are set so that P cannot make reference outside its assigned area. 
Before any other problem program Q acquires the central processing unit, 
the address boundaries are changed to values that will prevent Q from 
making reference outside the area assigned to Q. The task of changing 
address boundaries is one of the programmed functions of the multi- 
programming system. 

There are two clocks in the 7030 that can be used by programs. The 
first, referred to as the time clock, is a 36-bit binary counter which is 
automatically incremented by unity about once every millisecond. This 
clock can be read by a program under certain conditions but cannot be 
changed by a program. I t  is intended for measuring and identifying 
purposes, particularly in accounting for machine use, logging events of 
special interest, and identifying output. 

The second clock, referred to as the interval timer, is a 19-bit binary 
counter which is automatically decremented by unity about once every 
millisecond. Lnder certain conditions the interval timer may not only 
be consulted but may also be set to any desired value by a program. 
Whenever the interval-timer reading reaches zero, an interruption occurs 
(if the interrupt system is enabled). The main purpose of this device 
is to provide a means for imposing time limits without requiring pro- 
grammed clock-watchiiig, that is, without frequent inspection of the 
time clock. 

There are severa1 other features in the 7030 that facilitate multipro- 
gramming. For example, the autonomous operation of the exchange 
(Chap. 16) considerably reduces the frequency of input-output inter-
ruptions to the program. 

13.4. Programmed Logic 

Kow we turn our attention to the programmed logic and discuss how 
the built-in logic may be exploited by programming techniques in order to 
meet the six requirements for acceptable multiprogramming. Three tools 



are a t  our disposal: (1) the supervisory program, (2) the compiler, and 
(3) the source language. 

The supervisory program is assumed to be present in the machine 
whenever multiprogramming is being attempted. To the supervisory 
program is assigned the job of allocating space and time to problem 
programs. 

All~cationof space includes determining which area. of memory and 
disk storage and which input-output units are to be assigned to each of 
the programs. The space requirements (including the required number 
of input-output units of each type) are produced by the compiler as a 
vector whose components are quantities dependent in a simple way upon 
one or more parameters which may change from run to run. Any space 
requirements depending on parameters are evaluated a t  loading time 
when the particular values of tlhe run parameters are made available. 

The supervisory program uses the precise knowledge i t  has of the space 
requirements of a problem program together with any information i t  may 
have regarding its expected execution time and activity pattern to deter- 
mine the most opportune moment to bring that program into the execu- 
tion phase. I t  is not until the decision to execute is made that specific 
assignments of memory space, disk space, and input-output units are put 
into effect. By postponing space allocation until the last minute, the 
supervisory program maintains a more flexible position and is thus able 
to cope more effectively with the many eventualities and emergencies 
that beset computing installations, no matter how well managed they are. 

Allocation of time ineludes not only determining when a loaded program 
should be put into the execution phase but also handling queues of 
reqiiests for facilities from the various programs being concurrently 
executed. The fact that both pre-execution queuing and in-execution 
queuing are handled by programming rather than by special hardware 
results in a high degree of flexibility. Thus, a t  any time, the supervisory 
program is able to change the queue discipline in use on any shared facility 
and so cope more effectively with the various types of space and time 
bottlenecks that may arise. On interruptible facilities, such as the cen- 
tra1 processing unit, which allow one program to be displaced by another, 
changes in queue discipline may be expected to have very considerable 
effect upon the individua1 and collective progress of the programs being 
coexecuted. 

These allocating powers of the supervisory program have severa1 
implications. Most important of these is t,hat the compiler must produce 
a fully relocatable program-relocatable in memsry and in disk storage, 
and with no dependence on a specific assignment of input-output units. 
A further consequence is that the supervisory program is responsible for 
al1 loading, dumping, restoring, and unloading activities and will supply 



the operator with complete instructions regarding the handling of cards, 
tapes, and forms. 

In order to meet the requirements (Sec. 13.2) of independent prepara- 
tion of problem programs and noninterference with one another, it is 
necessary to assign the following functions to the supervisory program: 

1. Direct control of the enabled-disabled status of the interrupt 
system 

2. Complete control of the protection system and clocks 
3. Transformation of input-output requests expressed in terms of 

symbolic file addresses into absolute input-output instructions (a one-to- 
many transformation), followed by issuing of these instructions in accord- 
ance with the queue disciplines currently in effect 

4. Initial and, in some cases, complete handling of interruptions from 
input-output units and other central processing units 

By convention, whenever a problem program is being serviced by the 
central processing unit, the interrupt system is enabled; when the super- 
visory program is being serviced, either the enabled or the disabled status 
may be invoked according to need. Adherence to this convention is 
assisted by the compiler, which does both of the following: 

1. Refrains from generating in problem programs the instruction 
BRAIU'CHDISABLED (an instruction which completely disables the interrupt 
system) 

2. If i t  encounters this instructon in the source language itself, sub- 
stitutes a partial disable (a pseudo instruction) in its place, flagging it as a 
possible error 

So long as the interrupt system is enabled, the protection system is 
effective. Problem programs are therefore readily prevented from mak- 
ing reference to the areas occupied by other programs (including the 
supervisory program itself). They are further prevented from gaining 
direct access to the address boundaries, the interrupt-table base address, 
and the clocks, al1 of which are contained in the permanently protected 
area. 

For the sake of efficient use of the machine, one further demand is made 
of the programmer or compiler. When a point is reached in a problem 
program beyond which activity on the central processing unit cannot pro- 
ceed unti1 one or more input-output operations belonging to this program 
(or some related program) are completed, then control must be passed to 
the supervisory program so that lower-priority programs may be serviced. 

I t  is important to observe that the programmer is not required to desig- 
nate points in his program a t  which control may be taken away if some 
higher-priority program should need servicing. This would be an intol- 



erable requirement when unrelated programs are to be concurrently 
executed, especially if al1 arithmetic and status registers a t  such points 
have to contain information of no further value. 

It is the interrupt system (particularly as it pertains to input-output) 
that  makes this requirement unnecessary. The interrupt system allows 
control to be snatched away a t  virtually any program step, and the super- 
visory prograrn is quite capable of preserving al1 infurmstion necessary 
to allow the displaced program to be resumed correctly a t  some later time. 

In  removing certain features of the machine from the direct control 
of the problem programmer, we may appear to have lost sight of the 
requirement that the programmer retain a maximum degree of control 
(Sec. 13.2). However, for every such feature removed, a corresponding 
pseudo feature is introduced. Take, for example, the pseudo disable and 
pseudo enable instructions. When a problem program P issues a pseudo 
disable, the supervisory program effectively suspends al1 interruptions 
pertaining to P (by actually taking them and logging them internally) 
unti1 P issues a pseudo enable. Meanwhile, the interruptions pertaining 
to other programs not in the pseudo-disabled state are permitted to affect 
the state of the queue for the centra1 processing unit. 

Another example of a pseudo feature is the pseudo interztal timer; one 
of these is provided for each problem program. The supervisory pro- 
gram coordinates the resulting multiple uses of the built-in interval timer. 

The need to det'ect the fact that a program has become stuck in a loop 
or that an operator has not responded to ai1 instruction from the super- 
visory program is met by allotting a reasonable time limit for the activity 
in question. When this interval expires without receipt by the super- 
visory program of a completion signal, a,n overdue signal is sent to an 
appropriate console. The interval timer is, of course, used for this 
purpose, and expiration of t'he interval is indicated by the time signal 
interruption. 

I 3.5. Concluding Remarks 

We have attempted to show that the design of a computer may be 
influenced quite strongly by the desire to facilitate multiprogramming. 
Developing a complete multiprogramming system is a major undertaking 
of its own, but both the computer and the programming system benefit 
from coordinating the initial planning for both. 

Since the purpose here is to describe the structure of the computer 
rather than that of its programming systems, we have not discussed such 
other considerations as the optimizing and queuing problema that arisel 

E. F. Codd, Multiprogram Scheduling, Communs. ACM, vol. 3, no. 6, pp. 347-350, 
June, 1960, and no. 7, pp. 413-418, July, 1960; H. Freeman, On the Information- 
handling Efficiency of a Digital Computer Program, Trans. AIEE, paper no. 60-970. 



or the detailed specifications of a supervisory program and operating 
system. They would go beyond the scope of this book. We merely note 
here that an experimental multiprogramming system has been developed 
for the 7030 along the lines discussed above. A comprehensive set of 
trial runs of this system has dem~nst~rat'ed successfully the feasibility of 
multiprogramming of the 7030. 
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Chapter 14 

THE CENTRAL PROCESSING UNIT 
by E. Bloch 

14.1 . Concurrent System Operation 

Early in the design of the 7030 system it appeared t>hat a factor-of-6 
improvement in memory speed and a factor-of-l0 improvement in basic 
circuit speed over existing technology were the best one could look for- 
ward t'o during the time of the project. Since the performance leve1 
desired was much higher than could be obtained from faster components 
alone, the design had to provide for concurrent operation of various parts 
of the syst'em wherever possible. 

The need for concurrent operation affects al1 levels of the system, from 
the over-al1 organization to the details of specific instructions. Major 
parts of tphe syst'em (Fig. 14.1) can operate simultaneously: 

1. The core memory consists of severa] units of 16,384 words, operating 
on a 2.1-psec read-write cycle. Each unit is self-contained and has its 
own clock, addressing circuits, da.ta registers, and checking circuits. A 
typical 7030 system may have six memory units. To achieve a high 
degree of overlap, addresses are interleaved. The first four units share a 
block of 65,536 addresses, so that four consecutive word addresses lie in 
four different memory units. The next two units share a block of 
32,768 addresses with two-way interleaving. If the four-unit block is 
assigned primarily to data and the two-unit block primarily to instruc- 
tions, it  is possible to achieve rates of up to one fu11 data word and one 
half-word instruction every 44 psec. (Xote that segregating data and 
instructions may help to increase speed, but it is not a necessary step, 
since the memory is logically homogeneous.) 

2. The simultaneously operating input-output units are linked with 
the memories and the computer through the exchange, which, after receiv- 

Il'ote: The materia1 in Chap. 14 has been adapted from E. Bloch, The Engineering 
Design of the Stretch Computer, Proc. Eastern Joint Computer Conf.,no. 16, pp. 48-58, 
December, 	1959. 
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ing an instruction from the computer, coordinates the starting of the 
input-output equipment, the checking and error correction of the informa- 
tion, the arrangement of the information into memory words, and the 
fetching and storing of the information from and to memory. Al1 these 
f~nct~ions The high-speed are executed independently of the computer. 
disk units are controlled by the disk-synchronizer unit, which is similar in 

Memory units 

Memory out bus 

Mernory in bus 

I 

Data 

3 n 

Exchange r- Disk 
synchronizer I aritt%E unit 

Channels for 

input-output 


units 


(Magnetic tapes registers
Magnetic disks 
Printers TReaders 
Consoles High-speed 
Displays aritE:;L unit1 
Inquiry stations disk units 
Data transmission Centra1 

processingetc.) unit 

FIG.14.1. 7030 system. 

function to the exchange but is capable of much higher data rates. 
Memory cycles needed by the exchange and disk synchronizer are inter- 
leaved with those required by the computer. 

3. The centra1 processing unit (CPU) processes and executes instruc- 
tions with a high degree of overlap of interna1 functions. 

The concurrent operation of various parts of the system was examined 
in Chap. 13 from the point of view of the user and programmer. In the 
present chapter we shall see how the need for effective concurrent opera- 
tion has pervaded the design of the system and in particular of the cen- 
tra1 processing unit. 



14.2. Concurrenc~ within the Central Processing Unit 

instruction. 
Most earlier computers have a sequential flow of instructions, as shown 

in Fig. 14.2. In turn, an instruction is fetched, the operand address is 
updated (by indexing or indirect addressing), 

v 
r---- 1 the operand is fetched, and tlhe instruction is 

i exec'ited. In some computen the instructiin 
1 execution may be overlapped mith fetching of 

I the next instruction. I 
i Compare this mith the high degree of 

updating i overlapping in the 7030 (Fig. 14.3). Two
7 I instruction words, which often represent four 

i half-word instructions, and the operands for 
four more instructions can be fetched simul- 
taneously. At the same time two more in- 

I structions can be updated and another exe- 
cuted. After completing its current stage of 
processing, each instruction advances to the 

L,,,,A next stage as soon as register space is avail- 

FIG.14.2. Sequential opera- able. Because the duration of each stage and 
tion. the execution time of an instruction are vari- 

able, the process is noti a cyclic one, and 
the actual number of inst~ructlions in process varies continually. 

Al1 the units of the computer are loosely coupled together, each one 
controlled by its own clock system, which in tiirn is synchronized by a 
master oscillator. As may be expected, this multiplexing of the units of 

2 instruction words Instruction 

(up to 4 instructions) tf e r h  4 -,,+ D 


I updating [ I execution I 
FIG.14.3. Overlapped operation in 7030. 

the computer results in a large number of registers and adders. In all, 
the computer has 3,000 regist.er positions and aboilt 450 adder positions. 

Despite the multiplexing and simultaneous operations of successive 
instructions, the result is always made to appear as if interna1 operat$ion 
were sequential. This requires extensive interlock facilities. 

14.3. Data Flow 
The data flow tjhroiigh the computer is shown in Fig. 14.4. I t  is com- 

parable to a pipeline which, once filled, has a large output rate no matter 



what its length. The same is true here. Once the flow is started, the 
execution rate of the instructions is high in spite of the large number of 
stages through which they progress. 

The memory bus unit is the communication link between the memories 
on m e  side and the exchange, disk synchronizer, and CPU on the other. 

Memory units 

Instruction and 
indexing unit Operand buffer 

Look-ahead 

Checker in-bus 

ithmetic checker out 

InterruptI Isystem 

FIG.14.4. Computer units and bus system. 

The memory bus unit monitors the requests for storing in or fetching 
from memory and sets up a priority scheme. Since input-output units 
cannot hold up their requests, the exchange and disk synchronizer will 
get highest priority, followed by the CPU. In the CPU the operand-fetch 
mechanism, t he look-ahead unit, has priority over the instruction-fetch 



mechanism. Altogether the memory bus unit receives requests from and 
assigns priority to eight different channels. 

Since access to a memory unit can be independently initiated from 
severa1 sources, a busy condition can exist. Here again, the memory bus 
tests for the busy conditions and delays the requesting unit unti1 the 
desired memory unit is ready. The return address identifying the 

Memory out-bus 

I b 

From look-ahead P 4 Index word 
storage 

(17words) 

Index adder out bus 

I I~odificationl Index 
Instruction Index execution I Working / I arithmetic I 

register register 

Checker in # bus 

f Memory address bus 4 
FIG.14.5. Instruction unit. 

requesting unit is remembered, and the information is forwarded when it 
becomes available. 

Requests for stores and fetches can be processed a t  a rate of one every 
0.3 psec. If no busy or priority conditions exist, the time to return the 
word to the requesting unit is 1.6 psec, a direct function of the memory 
read-out time. 

The instruction unit (Fig. 14.5) is a computer al1 by itse1f.l It has its 
own instructions to execute, its own small memory for index-word storage, 

l R. T. Blosk, The Instruction Unit of the Stretch Computer, Proc. Eastern Joint 
Computer Conf., no. 18, pp. 299-324, December, 1960. 



and its own arithmetic unit. As many as six instructions can be a t  
various stages of progress in the instruction unit. 

The instruction unit fetches the instruction words from memory, 
steps the instruction counter, and indexes al1 instructions. After a pre- 
l iminar~  decoding of the instruction clnss, it recognizes and executes 
indexing and branching instructions; for other classes of instructions i t  
initiates data fetches and passes the partially decoded instructions on 
to the look-ahead. 

At the time the instruction unit encounters a conditional branch 
instruction, the conditioii may not be in its fina1 state because other 
operations currently in progress may still affect it. To keep things 
moving, the assumption is made here that the branch condition will not 
be met, and the next instruction in sequence is fetched. This assump- 
tion and the availability of two full-word buffer registers keep the rate of 
flow of instructions to the computer high most of the time. When the 
assumption proves wrong, the instruction unit must backtrack to the 
branch point and follow the new sequence instead. This takes time, of 
course. 

Two instruction words can be in the registers a t  any oiie time. As 
soon as the instruction unit starts processing an instruction, it is removed 
from the buffer, thus making room for the next instruction. 

The index-arithmetic unit and the index registers complete the instruc- 
tion unit. It should be noted that the index registers have been made an 
integra1 part of the instruction unit, so as to permit fast access to an index 
word without long transmission lines. There are sixteen index words 
available to the programmer, of which fifteen can be used for automatic 
address modification. The index registers are contained in a small 
memory unit made of multiaperture cores, which is operated in a non- 
destructive-read fashion where reading is much faster than writing. 
This permits fast operation most of the time, when an index word is 
referred to without modification. Additional time is needed only when 
modification is involved. 

After it has been processed through the instruction unit, the updated 
(indexed) instruction enters one of four levels of the look-ahead unit 
(Fig. 14.4). Besides the necessary information from the instruction, the 
associated instruction-counter value and certain tag information are 
stored in the same level of the look-ahead. The operand, already 
requested by the instruction unit, will enter this level directly and will 
be checked and error-corrected while awaiting transfer to the arithmetic 
unit. The look-ahead unit also performs al1 storing operations. 

The operating principles of the look-ahead unit, together with the 
sequencing of functions and the interlocking required to prevent out-of- 
sequence execution of instructions, are covered in Chap. 15. 



The two-part arithmetic unit described below is a slave to the look- 
ahead, receiving from it not only operands and instruction codes but also 
the signal to start execution. The arithmetic unit signals to the look- 
ahead the termination of an operation and, in the case of store operations, 
places into the look-ahead the result word for transfer to the proper 
memory location. 

14.4. Arithmetic Unit 

The design of the main arithmetic unit was established along similar 
lines. Every attempt was made to speed up the execution of arithmetical 
operations by multiplexing techniques. 

The arithmetic unit consists of a parallel unit for floating-point opera- 
tions and a seria1 unit for variable-field-length operations. The two units 
use the same arithmetic registers, namely a double-length accumulator 
of 128 bits (the left part being called register A and the right part register 
B), and a double-length operand register of 128 bits (C and D). The 
same arithmetic registers are used because the program may a t  any time 
switch from floating-point to variable-field-length operation, or vice 
versa. The result that is obtained by a floating-point operation can 
serve as the starting operand for a variable-field-length operation, or 
vice versa. 

Operations on the floating-point fraction and also variable-field-length 
binary multiply and divide operations are performed by the parallel unit. 
Floating-point exponent operations, variable-field-length (binary or 
decimal) add operations, and logical-connective operations are executed 
by the seria1 unit. The square-root operation and the binary-decima1 
conversion algorithm are executed in unison by both units. Decima1 
multiplication and division are not built in because they can be done faster 
-and quite conveniently-by a short subroutine using radix conversion 
and the fast binary arithmetic. 

Salient features of the two units will now be described. 

Serial Arithmetic Uni t  

The seria1 arithmetic unit (Fig. 14.6) contains two symmetrical por-
tions, one for the accumulator (AB) registers and one for the operand 
(CD) registers, feeding into a common binary adder or logical-connective 
unit and branching out again into two similar circuits for returning the 
result to either pair of registers. A two-leve1 switch niatrix is used to 
extract 8 adjacent bits from any of 128 possible register positions, together 
with a by-pass for 8 bits which are to remain undisturbed. True-com-
plement (inversion) circuits, both before and after the adder, take care of 
subtraction. A decimal-correction circuit is switched into the data path 
when decimal addition or subtraction is specified. The result is returned 



via another two-leve1 switch matrix to the selected register positions. 
Al1 other register positions remain undisturbed. 

A single pair of bytes is extracted, arithmetic or logic performed, and 
the result returned to the registers in one clock cycle of 0.6 psec. Longer 

From look-ahead 

Operand 
Accumulators V v registers 

A B C I D 

Switch 
matrix matrix 

(16of  1281 (16of 128) 

I I 

FIG.14.6. Seria1 arithmetic unit. T-C: true-complement. 

fields are processed by repeatedly stepping the counters that contro1 the 
switch matrixes. The operations are checked by parity checks on the 
switch matrixes and by use of duplicate arithmetic and logic units. 

ParaiEel Arithrnetic Unii 

The parallel arithmetic unit (Fig. 14.7) is designed to execute binary 
floating-point operations at  very high speed.' Since both single-length 

1 O. L. MacSorley, High Speed Arithmetic in Binary Computers, Proc. IRE, vol. 49, 
no. 1, pp. 67-91, January, 1961. 
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(48-bit fraction) and double-length (96-bit fraction) arithmetic are per- 
formed, the shifter and adder extend to 96 bits. This makes it  possible 
to have almost the same speed for single- and double-length arithmetic. 
The adder is of a carry-propagation type with look-ahead over 4 bits at  a 
time, to reduce the delay that normally results in a ripple-carry adder. 
This carry look-ahead results in a delay time of 0.15 psec for 96-bit 
additions. Subtractions are carried out in 1s complement form with 

regi sters '2 
True-

complement 
switch 

MCD-Multiplicand 

MPR-Multiplier 

CSA -Carry save adder 


register regi ster 

FIG.14.7. Parallel arithmetic unit. 

automatic end-around carry, but the result is always converted to abso-
iute-value form with separat,e sign. 

The shifter is capable of shift,ing up to four positions to the right and 
up to six positions to the left a t  one time. This shifter arrangement does 
the most common shifting operations in one step. For longer shifts the 
operation is repeated automatically. 

To expedite the execution of the multiply instructions, 12 bits of the 
multiplier are handled in one cycle. This is accomplished by breaking 
the 12 bits into groups of 3 bits. The action is from right to left arid con- 
sists in decoding each group of 3 bits. By observing the lowest-order 
bit of the next higher group, a decision is made as to what multiple of the 



multiplicand must be added to the partial product. Only even multiples 
of the multiplicand are available, and subtraction or addition of the 
multiples can result. The example of Fig. 14.8 will elaborate this point. 

The four groups of multiplicand multiples and the partial product of 
the previous cycle are now fed into carry save adders, which operate 
according to the rules: 

S = A V B V C  where A, B, and C 
are either input or 
in-carry bits 

C' = AB V AC V BC 

There are four of these adders, two in parallel followed by two more in 
series (Fig. 14.7). The output of carry-save adder 4 then results in a 

Multiplicand (C) 
addi t ions 

Groups 

Multiplier b i t s  

Equivalent  to: I 

n+4 724-3 ni-2 n+l n 

x x o  011 110 101 O10 

Fina1 decoding I 
FIG. 14.8. Multiply example. 

double-rank partial product, the product sum and the product carry. 
For each cycle this is fed into carry-save adder 2, and, during the last 
cycle, into the carry propagate adder for accumulation of the carries. 

Since no propagation of carries is required in the four cycles when multi- 
plicand multiples are added, this operation is fast, and it is the main 
contributor to the short mult iply  time of the 7030. 

The divide scheme is similar to the mult iply  scheme in that severa1 
multiples of the divisor, namely l, 35, and 3/4 times the divisor, are 
generated to reduce the number of add or subtract cycles needed to gen- 
erate the quotient. I t  has a further similarity to another well-known 
mult iply  scheme, in that strings of consecutive 1s  or 0s in the partial 
remainder are skipped, requiring only one add cycle for each string. 
The net effect is that the number of cycles is reduced, on the average, by a 
factor of 3.5 as compared with nonrestoring divisi0n.l 

l C. V. Freiman, Statistica1 Analysis of Certain Binary Division Techniques, 
PTOC. IRE, vol. 49, no. 1, pp. 91-103, January, 1961. 



The power of this method may be illustxated by an example done three 
different ways. Let us assume the following normalized values: 

Dividend 0.1 O 1 0 0 0 0 0  
Divisor DR 0.1 l O 0 0 1  l O (trueform) 

BR' l . O  O 1 l 1 O 1 O (2s complement form) 
/.iDR 0.l O O l O l O O 1 (obtained by shifting and adding DR 

to itself) 

The leftmost bit represents the sign (O for + and 1 for -). For division 
only, subtraction in the parallel arithmetic unit is more easily accom- 

Quotient Comments 

Dividend 
Add DR' 

O . . . . . . . . . . . . . .  	Sign minus (i), hence q = O 
Shift partial remainder left 
Add DR 

o 	1 . . . . . . . . . . . .  Sign plus (O),hence q = 1 
Shift 
Add DR' 

o 1  1  . . . . . . . . . .  	q = l  
Shif t 
Add DR' 

O1 	i 0 . . . . . . . .  q = o  
Shift 
Add DR 

o 	1  1  o o . . . . . .  q = O  
Shift 
Add DR 

o 	1  1 o o I . . . .  q = l  
Shif t 
14dd DR' 

0 1  1  O 0  1 1 . .  	q = l  
Shift 
Add DR' 

0 1 1 0 0 1 1 1  	q = l  
etc. 

FIG.14.9. Example of nonrestoring division. DR:divisor; DR':2s complement of 
divisor; q: current quotient bit. One quotient bit is generated for every shift-and- 
add cycle. 

plished by adding the 2s complement of the numher, whereas the 1s 
complement is used for other operations, as noted before. 

Nonrestoring division is demonstrated in Fig. 14.9. One quotient bit 
is generated for each shift-and-add cycle, so that 48 cycles would be 



needed for the 4&bit quotient of the 7030. At each step, if the partial 
remainder has a sign bit 0, DR' is added; if the sign is I ,  DR is added. 
The resultant partial remainder is shifted once to the left, and the inverse 
of its sign bit becomes the new quotient bit. 

Figure 14.10 shows that the division can be shortened greatly by skip- 
ping over adjacent 1s  or 0s in the partial remainder. Another way of 
saying this is that the partial remainder is normalized by shifting out 
those extra high-order bits which can be replaced directly by correspond- 
ing quotient bits. If the remainder is positive (in true form), these bits 

Shift-add 
cycle 

Quotient Comments 

Dividend 
Add DR' 
q = O  

Shift over Is, q = 1 
Add D R  
q = l  

0.1 O1 1  l o 0 0  o 1 1  o . . . .  Shift over Os, q = O 
1 . 0 0 1  1 1  o 1  o Add DR' 

Shift over Is, q = l 1 1  
Add D R  
etc. 

FIG.14.10. Divide example with skipping over Is and 0s. On the average, 2.6 quotient 
bits are generated for every shift-and-add cycle. 

are 0s; if it is negative (in complement form), these bits are 1s. It may 
be shown that the quotient bit to be inserted for each shift is the same 
as the bit shifted out. This technique requires both the dividend and the 
divisor to be normalized at  the start, as aras already true in the numbers 
chosen for the example. 

The skipping technique is based on reasoning that a positive partial 
remainder with leading zero bits must be smaller than any divisor that 
has been normalized. Hence, subtracting the divisor is certain to result 
in an overdraw, and the correct quotient bit is O. Thus the cycle can be 
avoided by simply shifting and inserting the correct quotient bit. A 
negative, complemented remainder with leading I s presents the converse 
situation. Its absolute value is certain to be less than the divisor, so that 
adding the divisor is bound to leave a positive remainder with a quotient 



bit of l ,  and it  is not necessary to do the actual addition. Once the 
partial remainder is normalized, inspection of the leading bit is not 
enough to te11 whether adding or subtracting the divisor is necessary or 
not, and a fu11 cycle is taken a t  that point. 

The divide scheme actually used in t'he 7030 is an extension of the skip- 
ping technique, obtained by inspecting more than 1 bit of the remainder 
and divisor. One of three mult'iples of the divisor is selected for each add 
cycle by looking up a table (Fig. 14.11) on the basis of 3 high-order bits 

*IOO*O 101. 110. 111. - (True) 
Oli-** 010. . 001 000- (Complement) 

Partial remainder 

FIG.14.11. Table for selecting divisor multiple. Select complement-divisor multiple 
if partial remainder is true. Select true-divisor multiple if partial remainder is a 
complement. 

of the normalized previous remainder and 5 high-order bits of the normal- 
ized divisor. The addition is carried out, the new partial remainder is 
normalized, and the correct quotient bits are selected by the rules given 
in Fig. 14.12. The example with this technique in Fig. 14.13 shows a 
further reduction in the number of cycles. 

The rules are considerably more complex than those in the previously 
cited techniques, but the reasoning is roughly as follows. After the 
partial remainder is normalized, the subsequent number of cycles can be 
further reduced by selecting a multiple of the divisor that is as close in 
magnitude to the remainder as possible, so that the magnitude of the new 
partial remainder-the difference of the two values-is as close to zero as 



Selected divisor 
multiple 

D R  or DR' 

S i g n  bit of 
new partial 
remainder 

Quolient bits 

FIG. 14.12. Basic table for generating quotient bits. Additional rules: (1) Cse only as 
many quotient bits, starting at the left, as the number of shifts needed to normalize 
the new partial remainder. (2) If only two shifts are needed for 3/4DR or ( S D R ) ' ,  
invert the first quotient bit on the next cycle. (3) If more than six shifts are needed, 
take additional shift cycles and continue to generate O or l quotient bits, depending on 
remainder sign. 

possible. As a result,, there are more leading bits to be shifted out during 
normalization than before. Ideally, the divisor multiple is picked pre- 
cisely so as to leave a remainder which, to single precision, is zero, so that 
the division is finished. For practical purposes, the selection was limited 
to a much cruder choice of one of three multiples: 1, 4.4, and times the 

Shift-add 
cycle Quotient Comments 

Dividend 
Add DR' 
q = o  

0 . 1 0 0 1 0 1 0 0 1  Add % D R  
1 .1  i l 1  1 1  0 0 1  0 1  1 0 0 1  1 1  q=100111 
< I 1 etc. 

FIG. 14.13. Example for divide met,hod used in 7030. % D R  and 3.S D R  (not shown) 
are used, as well as skipping over 1s and 0s. On the average, 3.5 quotient bits are 
genersted each cycle. 



divisor; l is used when the normalized remainder is close to the divisor in 
magnitude, when the remainder is much larger, and 4.iwhen it is much 
smaller. 

The scheme always permits at  least two shifts after each add cycle. 
As many as six shifts can be carried out in the same cycle as one addition; 
if more shifts are needed, extra cycles rtise used without addition. The 
lirnitation -o a six-way s M t  is a matter rzf economy, but, it only acids 5 
per cent to the number of cycles that would be needed without this 
limitation. 

The 7030 divide scheme is somewhat similar to a base-4 method 
described in the 1iterature.l The base-4 method has a fixed shift of 
2 bits per cycle, whereas the method described here allows from 2 to 6 
bits of shift. 

In floating-point muit iply  and divide operations, the arithmetic ori the 
fraetions is performed by the parallel arithmetic unit, as described above, 
while the seria1 arithmetic unit is executing the exponent arithmetic. 
Here, again, is a case where overlap and simultaneity of operation are 
used to special advantage. 

14.5.Checking 

The operation of the computer is thoroughly checked. An error-
correction code is employed for transfers of data from memory. The 
code is attached to al1 words on the way into memory. Every time a 
word is fetched from memory, the code is checked. If a single error is 
indicated, a correction is made, the error is recorded on a maintenance 
output device, and computing continues. 

Within the machine al1 arithmetical operations are checked either by 
parity, d~plicat~ion, a These checks are or cast,ing-out-three process. 
overlapped wit'h the execution of the next instruction. 

14.6. Component Count 

Figure 14.14gives the number of transistors used in tlhe various sections 
of the machine. It becomes obvious that the floating-point unit and 
the instruction unit use the highest percentage of transistors. In the 
floating-point unit this is largely due to the e~t~ensive circuits for the 
speeded-up mult iply  and divide schemes. In the instruction unit most 
of the transistors are in the controls, because of the highly multiplexed 
operation. 

J. E. Robertson, A Xew Class of Digital Division Methods, I R E  Trans. on Elec- 
tronic Computers, vol. EC-7, no. 3, pp. 218-222, September, 1958. 



Number of Per cent of 
Unit transistors total 

Memory controls 10,500 

Instruction unit : 
Data path 17,700 
Controls 19,500 

Look-ahead unit : 
Data path 17, 900 
Controls 8,600 

Arithmetic registers 1 10,000 

Seria1 arithmetic unit : 
Data path 10,000 
Controls 8,700 

Parallel arithmetic unit : I 
Data path 32,700 
Controls 3,000 

Checking 24,500 

Interrupt system i 6,000 

Total 169,100 

Double Cards 4,025 
Single Cards 18,747 
Power 21 kw 

FIG.14.14. Component counts in the computer sections. 

14.7. Performance 

Figure 14.15 shows some examples of arithmetic speeds. Decima1 
mul t ip ly  and divide instructions call for a subroutine; the times are not 
shown because they depend on the nature of the subroutine. 

These figures give only a rough indication of the performance to be 
expected on a specific problem. Because of the large degree of overlap, 
one cannot correctly quote average times for individua1 operations that 
could be added together to give the total time for a sequence of such 
operations. I t  is possible for indexing and branching instructions, for 
example, to be completely overlapped with arithrnetical operations, so 
that their effective time becomes zero. On the other hand, it is clear 



ADD MULTIPLY DIVIDE 

Floating point 1 . 5  2 . 7  9.9 
VFL binary 

(for 16-bit numbers) 
VFL decima1 

(for 5-digit numbers) 5 . 4  Subroutine Subrout,ine 

FIG. 14.15. Examples of arithrnetic speeds. 

that a sequence consisting exclusively of indexing and branching instruc- 
tions would take a significant amount of time. 

The only valid way to time a specific program is either by measuring 
the time during actual execution or by simulating the intricate timing 
conditions of the T030 dynamically on another computer. 

14.8. Circuits 

Having reviewed the CPU organization of the 7030, we shall briefly 
discuss the components, circuits, and packaging tec hniques used in the 
design. 

The basic circuit component is a high-speed drift transistor with a 
frequency cutoff of appro~imat~ely100 megacycles. To achieve high 
speed it is kept out of saturation a t  al1 times. The transistor exists in 
both a PNP and an NPN version. The main reason for using two ver- 
sions is to avoid the problem of leve1 translation caused by the 6-volt 
difference in potential between the base and the collector. 

Figure 14.16 shows the PNP circuit. The inputs A and B operate 
a t  a reference voltage of O volt, which is established by the preceding 
circuit (not shown). If inputs A and B are both positive by 0.4 volt 
with respect to the reference voltage, t heir respective transistors cut off. 
This causes the emitter of transistor C to go positive wit h respect to its 
base and conduct a 6-ma current, flowing from the current soiirce which is 
made up of the +30-volt supply and resistor R. As a result, output F 
goes positive by 0.4 volt with respect to its reference of -6 volts; a t  the 
same time output F' goes negative by 0.4 volt with respect to the reference. 

When either of the inputs goes negative, its transistor becomes con- 
ducting. The emitter of transistor C goes negative and C is cut off. 
The result is that output F' goes positive and output F goes negative with 
respect to the reference. 

The principle of this circuit is one of switching (or steering) a constant 
current either toward output F (C conducting) or toward output F' 
( A or B or both conducting). The PNP circuit provides both the logica1 



function and and the function not or. Minimum and maximum signal 
swings are also shown in Fig. 14.16. 

A dual circuit using the NPN transistor is shown in Fig. 14.17. The 
principle is the same, but the logica1 functions or and not and are obtained, 

Symbol 

Truth table 

Circuit diagram 

lnput  
m S 0 . 5 ~  

+0.4v 
Min.-max. 
signal voitages Ref Ov Ref -6v 

- 0.4 V - 1;;; 
- 0 . 8 ~  

Delay =: 20 nsec 

Circuit response Output 
Input 

FIG. 14.16. Current-switching circuit, Ph7P. Symbols : A and, V or, 1 no£. 

and the reference voltages are now - 6 volts at  the input and O volt a t  
the output. 

The circuits described so far are versatile enough so that they could be 
the only circuits used in the system. Because of the many data buses and 
registers, however, it was found useful to provide also a distributor func- 
tion and an overriding function. This resulted in a circuit with a third 



voltage level which permitted great savings in space and transistors. 
Figure 14.18 shows the PNP version of the third-leve1 circuit. 

Without transistor X, transistors -4 and B in conjunction with the 
reference transistor C would work normally as a current-switching circuit, 
in this case an and circuit. When transistor X is added, with the stipula- 
tion that the down level of X be more negative than the lowest possible 
level sf -4 or B, it becsmes apparent that when X is negative the current 
will flow through that branch of the circuit in preference to branch 

Symbol 

Truth table 
F' =-(A VB) 

=(1A)A(-

Circuit diagram 

FIG.14.17. Current-switching circuit, N P N .  

F or F', regardless of input A and B. Therefore, the output of F and F' 
will be negative, provided input X is negative. OutiputG is the inverse of 
input X. If, however, X is positive, then the status of A and B will deter- 
mine the function of F and F' implicitly. This demonstrates the over- 
riding function of input X. 

Similarly, the NPN version, not shown, results in the or function a t  F 
if input X is negative and in a positive output at  F and F', regardless of 
the status of A and B, if X is positive. 

The speed of the circuits described so far depends on the number of 
inputs and the number of circuits driven from each output. The response 
of the circuits is anywhere between 12 and 25 nsec (nanoseconds, bil- 
lionths of a second) per logica1 step, with 18 to 20 nsec average. The 



Circuit 
(Ad 

Min.-max. 
signal voltages 

Circuit response 

X G 

Syrnbol 

Tnith table 

Ref G nd - 6.0 v 

- 1 . 2 ~  
X input 

- 2.0 v 

- 6 . 4 ~  
-6.5" 

(Al1 outputs) 

FIG. 14.18. Third-leve1 circuit, PNP. 
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Circuit 

Truth tables 

Circuit 
diagrams 

signal voltages Re f Gnd 

D e l a y ~  10 nsec 
Circuit response 

FIG. 14.19. Emitter-follower logic. 

- 0.35 V 

chain i41 

AVB 

number of inputs allowable per circuit is eight. The maximum number of 
circuits driven is three. Additional circuits are needed to drive more 
t,han three bases, and, where current-smitching circuits communicate over 
long lines, termination networks must be added to avoid reflections. 

To improve the performance of the computer in certain critica1 places, 



emitter-follower logic is used, as shown in Fig. 14.19. These circuits 
have a gain less than 1, and they require, after a number of stages, the 
use of current-switching circuits as amplifiers and leve1 setters. Both 
and and or circuits are available for both a ground-leve1 (shown) and a 
- 6-volt-leve1 input (not shown). To change a ground-leve1 circuit into 
a -6-volt-leve1 circuit it  is necessary to change the appropriate power 
supply levels. Because of variations in inputs and driven loads, the cir- 
cuits must be designed to allow such variations over a wide range; this 
requires the feedback capacitor shown in the circuit, to maintain stability. 

Al1 functions needed in the computer can be irnplemented by the use 
of the aforementioned circuits, including the flip-flop function, which is 
obtained by connecting a PNP current-switch block and an N P N  
current-switch block together with proper feedback. 

14.9. Packaging 
The circuits described in the last section are packaged in two ways, 

as shown in Fig. 14.20. The smaller of the two printed circuit boards is 

FIG. 14.20. Single and double circuit cards. Front and rear views. 



called a single card and contains and or or circuits. The wiring is one- 
sided, and besides the components and transistors, a rail may be seen 
which permits the shorting or addition of certain loads depending on the 
use of the circuits. This rail has the effect of reducing the different 
types of circuit board needed in the machine. Twenty-four different 

FIG. 14.21. The back panel. 

boards are used, and, of these, two types reflect approximately 70 per cent 
of the total single-card population of the machine. 

Because of the large number of registers, adders, and shifters used in the 
computer, where the same functions are repeated many times, a second 
package was designed to be big enough to hold a complete function. 
This is the larger board shown in Fig. 14.20, called a double card. It has 
four times the capacity of a single card and has wiring on both sides of 
the board. Components are double-stacked. Again the rail is used to 



effect circuit variations for the different applications. Eighteen double- 
card types are used in the system. Approximately 4,000 double cards 
house 60 per cent of the transistors in the machine. The rest of the 
transistors are on approximately 18,000 single cards. 

The cards, both single and double, are assembled in two gates, and two 
gates are assembled into a frame. Figure 14.21 shows the back-pane1 

FIG. 14.22. The frame (closed). 

wiring of one gate, and Figs. 14.22 and 14.23 show the frame in closed 
and open position. 

To achieve high performance, special emphasis had to be placed on 
keeping the noise to a low level. This required the use of a ground plane 
which covers the whole back pane1 underneath the intercircuit wiring. 
In addition, the power-supply distribution system had to be of low 
impedance to avoid noise pick-up. For this reason a bus system con- 



sisting of laminated copper sheets is used to distribute the power to each 
row of card sockets. Wiring rules are that single-conductor wire is used 
to a maximum of 2 ft, twisted pair to a maximum of 3 ft, unterminated 
coaxial cable to a maximum of 5 ft, and terminated coaxial cable to a 
maximum of 100 ft. The whole back-pane1 construction, including the 

FIG. 14.23. The frame (extended). 

proper application of single wires, twisted pairs, or coaxial cable to 
minimize the noise on each circuit node, was laid out by means of a com- 
puter program. 

With the high packing density made possible by the double cards, a 
single frame may consume as much power as 2 kw, the average con- 
sumption being around 1 kw. To reduce power distribution and regula- 
tion problems, a specially designed 2-kw power supply, using 400-cycle 
components for greater compactness, is mounted in each frame. The 



FIG. 14.24. The central processing unit. 

supplies are fed from a regulated 400-cycle motor-generator set, which 
also serves the purpose of eliminating 60-cycle power-line variations. 

The two gates of a frame are a sliding pair, with the power supply 
mounted on the sliding portion. Al1 connecting wires between frames are 
coaxial cable arranged in layers to form a drape, which can follow the 
gate as it  slides out of the frame. 

Figure 14.24 shows eighteen of these frames tied together to form the 
entire central processing unit, as well as the CPU maintenance console. 



Chapter I5 

THE LOOK-AHEAD UNIT 
by R. S. Ballance, J. Cocke, and H. G. Kolsky 

15.1. General Description 

The look-ahead unit is a speed-matching device int'erposed between the 
arithmetic unit and the memory. With multiple 2-psec memory units- 
typically four units for data, each independently operable-it is possible to 
fetch or store a data word every 0.5 psec. This rate would be high enough 
to keep up wit,h tlhe fast arithmetic unit, as well as a number of input- 
output units, were it not for unavoidable delays. The delay between 
the initiation of an operand transfer and the arriva1 of that operand a t  its 
destination is made up partly of the access time of the memory itself and 
partly of the time taken for tJhe operand to pass through a series of 
switches and registers. More delay occiirs if the desired memory unit 
happens to be busy finishing a previously initiated memory cycle or if it 
still needs to service a request with higher priority. The total waiting 
time may amount to several memory cycles. 

The time spent by the arithmetic unit waiting for an operand may be 
greatly reduced by "looking" several instructions ahead of the one 
currently being executed. If the memory reference is initiated early 
enough, the operand will usiially he available in a buffer register by the 
time the arithmetic unit is ready for it. Similarly, the arithmetic unit 
should be allowed to place a just-computed result into a buffer register for 
storing in memory while it proceeds with the next operation. By per- 

Note: The discussion of the results of a timing simulator study, which governed the 
choice of design parameters of the look-ahead unit, is taken from an earlier paper hy 
J. Cocke and H. G. Kolsky, The Virtual Memory in the Stretch Computer, Pror. 
Eastem Joint Computer Conf., no. 16, pp. 82-93, Decemher, 1959. That paper 
included a description of the simulator logic, which is omitted here. I t  also contained 
a description of the look-ahead concept on which the simulator was based; this chapter 
includes instead a simplified description by R. S. Ballance of the actual look-ahead 
unit as it exists in the Los Alamos system. 

228 



forming these collection, storage, and distribution functions, the look- 
ahead unit raises the effective speed of the arithmetic unit. 

The look-ahead unit may also be considered as a buffer that helps to 
smooth the data flow through memory. With many parts of the system 
having independent access to memory, It is natura1 for peaks and valleys 
to occur in the demand for a given memory uiiit. Input-output units 
cannot be kept waiting long, and so they have a higher priority on memory 
than the central processing unit. If the CPG were simply stopped during 
a period of peak input-output activity, the waitiilg time would be lost 
completely. By having a reservoir for unexecuted instructions in the 
look-ahead registers, it is possible to make up some of the lost time by 
satisfying deferred CPU demand during a period of lower input-output 
activity. Thus the look-ahead helps to regulate the fluctuations in 
memory demand. 

As has been described iil Chap. 14, there are actualiy two such buffering 
devices in the central processing unit. One is the instruction unit, which 
fetches the instructions, indexes and partially executes them, and initiates 
memory references for operands. The other is the look-ahead unit, which 
consists of several look-ahead leuels, each providing one stage of buffering. 
A level comprises a series of special registers, which receive a pre-decoded 
instruction from the instruction unit and wait for the operand to arrive 
from memory. The arithmetic unit (both the parallel and the seria1 
parts, since they do not operate independently) receives the assembled 
operation and operand information as soon as everything is ready aad 
proceeds with the operation. A store operation causes the result to be 
returned to an available level in the look-ahead unit and then to be sent 
to storage while the arithmetic unit proceeds to the next instruction. 

The look-ahead unit may be described as a virtual memory for the arith- 
metic unit. The arithmetic unit communicates only with the look-ahead 
unit, not directly with the rea1 memory; it receives instructions and oper- 
ands from the look-ahead and returns its results there. The virtual 
memory, being small and fast, resembles in some respects the separate fast 
memory that was originally proposed for Project Stretch. It differs 
greatly, however, in that it takes care automatically of the housekeeping 
involved in the data and instruction transfers and thus avoids most of the 
extra time and al1 of the difficult storage-allocation problems associated 
with a hierarchy of memories of different sizes and speeds. 

To make the housekeeping fully automatic and keep the task of "look- 
ing ahead" from being a burden on the programmer, it was necessary to 
solve several fundamental logica1 problems in the design of the look-ahead 
unit. One class of problems results from the ability of the machine to 
treat instructions as data. This ability is a basic property of stored- 
program computers, where instructions and data reside in the same 



alterable memory. As an example, consider the instruction sequence: 

Location Instruction 

a LOAD, b 
a + l  STORE ADDRESS, U + 2 
a - t -2  BRANCH, C 

where a, b, and c are memory addresses. Unless precautions are taken, 
the instruction unit may be preparing the BRANCH instruction before i t  
has been modified by STORE ADDRESS. (This ability to modify instruc- 
tions was a major advance resulting from the invention of the stored- 
program concept. I ts  importance has diminished greatly with the advent 
of indexing, but it is still undesirable to prohibit instruction alteration or 
make i t  difficult to use.) 

A similar problem may arise in the manipulation of data. Thus the 
expression T:+, = (Ti+ D ) 2might be formed by the sequence: 

LOAD, t 
ADD, d 
STORE, t 
MTJLTIPLY, t 

where t and d are the addresses of T and D. Here STORE changes the 
operand needed for the MULTIPLY instruction, which would already be 
under preparatioii. 

A third example occurs in condit'ional branching, when the condition 
depends on the result of an operation yet tzo be completed by the arith- 
metic unit. To nlaintain efficient operation, the instruction unit must 
"guess" the outcome of the test and continue to prepare instructions. If 
the guess proves wrong, the already prepared instructions must be dis- 
carded, and any modifications of addressable registers must be rescinded 
before the instruction unit starts down the correct path. 

Program interruption produces a similar situation. The instruction 
and look-ahead unit,s may be working on instructions which may never 
recur after t'he interr~pt~ion and which, therefore, ehould leave no ttraces. 

These are logica1 pitfalls that would be very difficult to avoid by pro- 
gramming means. Hence the design of the look-ahead unit was required 
to make the CPU, despite its complex overlapped and nonsequential 
operation, appear to execute programs sequentially, one instruction a t  a 
time. 

15.2. Timing-simulation Program 

The detailed design of the look-ahead unit could not be completed unti1 
severa1 system-design criteria were established. The complexity of the 
proposed system made it extremely difficult to analyze. Even the exist- 
ence of the look-ahead unit could not be justified on the basis of simple 



calculations. At the same time, decisions were needed concerning such 
basic problems as the number of memory units, the interlacing and alloca- 
tion of memory addresses, and the number of look-ahead levels required. 
Also of interest were trade-ofT factors for the speed of tlhe instruction unit, 
the arithmetic unit, and the maglietic core memory units. 

A timing-simulator program was written, for the IBM 704, to attempt a 
quantitative answer to such questions. This program simulated the 
timing of typical test problems on a computer system embodying the 
look-ahead concept. I t  should be stressed that the program was a 
t i rnhg  simulator and did not execute instructions in an arithmetical 
sense. Also, the parameters for the study were chosen arbitrarily to 
cover ranges of interest and do not represent actual operation times used 
in the design. The simulator traced the progress in time of the instruc- 
tions through the computer model, observing the interlocks necessary to 
make the look-ahead behave correctly. 

Because of the concurrent, asynchronous operation of different parts 
of the computer, there are many logical steps being executed a t  any 
time, with each step proceeding a t  its own rate. This flow of many 
parallel continuous operations was simulated by breaking the time 
variable into finite time steps. The basic time step in the simulator was 
0.1 microsecond. 

Experience indicated that more information would be gained by making 
a large number of fast parameter studies, using different configurations 
and test programs, than could be obtained by a very slow, detailed simu- 
lation of a few runs with greater precision per run. Even so, the time 
scale was too fine for serious input-output application studies. These 
would have required a simpler simulator having a basic time interval a t  
least ten times as coarse. 

A series of studies were made, in which the main parameters describing 
the system were varied one or two at  a time, in order to get a measure of 
the importance of various effects. After this the studies were specialized 
toward answering specific questions in the 7030 design. 

Five test programs were selected as typical of different classes of 
problems. 

1. Mesh problem. Part of a hydrodynamics problem containing a 
fairly "average" mixture of instructions for the kind of scientific 
problems found a t  the Los Alamos Scientific Laboratory: 85 per cent 
floating-point, 14 per cent index-modification, and 1 per cent variable- 
field-length instructions. The execution time of such problems is usually 
limited by the speed of the floating-point arithmetic unit. 

2. Monte Carlo branching problem. Part of an actual Monte Carlo 
neutron-diffusion code. ~ h i srepresents a chain of logical decisions with 



very little arithmetic. I t  contains 47 per cent floating-point instructions, 
15 per cent index-modification instructions? and 36 per cent branches of the 
indicator and unconditional types. I ts  speed is largely instruction- 
access-limited. 

3. Reactor problem. The inner loop of a neutron-diffusion problem. 
This consists of 90 per cent floating-point instructions (39 per cent of 
which are multipby instructions) and 10 per cent index-modification 
instructions. I ts  speed is almost entirely limited by the arithmetic unit. 

4. Computer test problem. The evaluation of a polynomial using com- 
puted indices. It has 71 per cent floating-point, 10 per cent index- 
modification, 6 per cent variable-field-length, and 13 per cent indicator 
branch instructions. It is usually arithmetic-unit-limited, but not for al1 
configurations. 

5. Simultaneous equati0n.s. The inner loop of a matrix-inversion 
routine, having 67 per cent floating-point and 33 per cent index-modifica- 
tion instructions. Arithmetic and logic are about equally important. 
It is limited both by arithmetlic and instruction-access speeds. 

Some of the results of these studies are summarized below. For 
simplicity, only the first two problems, the mesh ai-id Monte Carlo calcula- 
tions, are illustrated ; the other problems generally gave results inter- 
mediate between these two. 

Nurnber of Loolc-ahead Levels 

Figure 15.1 shows t.he effect on speed of varying the number of levels of 
look-ahead. Curves for the Monte Carlo and mesh calculations with two 
sets of arit hmetic- and instruction-unit speeds are shown. The arith- 
metic-unit times given are average for al1 operations. A number of 
interesting results are apparent from these curves. 

l .  The look-ahead organization provides a suhstantial gain in per- 
formance. The point for "O levels" means that the arithmetic unit is 
tied directly to the in~t~ruction unit, although simple indexing-execution 
overlap is still possible. 

2. The speed goes up very rapidly for the first two levels, then rises 
more slowly for the rest of the range. 

3. A large number of levels does less good in the Monte Carlo problem 
than in the mesh problem, becaixse constant branching spoils the flow of 
instmctions. Kotice that the curve for the Monte Carlo problem 
avtiially decreases slightly beyond six levels. This phenomenon is a 
result of memory conflicts caused by extraneous memory references 
started by the computer's running ahead on the wrong-way paths of 
branches. 



4. The computer performance on a given problem is clearly lower for 
lower arithmetic speeds. It is important to note, however, that the 
sensitivity of the over-al1 speed to change in the number of levels is also 
less for lower arithmetic speeds. The look-ahead improves performance 
in either case, but it is not a substitute for a fast arithmetic unit. 

Mesh calculation,rr,T-1 
Monte Carlo calculation -I 

O 2 4 6 8 O 2 4 6 

Levels of look-ahead Main memory units 

FIG.15.1. Computer speed vs. number of FIG.15.2. Computer speed vs. number of 
levels of look-ahead. Four main mem- main memory units. Four levels of look- 
orie~,  2.0 psec; two fast memories, 0.6 ahead; arithmetic-unit time 0.64 psec; 
psec; for two sets of arithmetic speeds: instruction-unit time 0.6 psec. A: in-

A B struc tions in separate 0.6-psec memory ; 
Arithmetic-unit time, psec 0.64 1.28 B: instructions in separate 2.0-psec mem-, 
Instruction-unit time, psec 0.6 1.4 ory; C: instructions and data sharing 

same 2.0-psec memory. 

Number of Memory Units 

Figure 15.2 shows how interna1 computer speed varies with the number 
of memory units and with two different memory speeds. The entire cal- 
culation is assumed to be contained in memory. The speed gain from 
overlapping memories is quite apparent from the curves. 

The origina1 computer design assumed the use of two kinds of memory 
units, a large "main" memory unit (2.0-psec cycle) and a pair of fast but 
smaller memory units (0.6-psec cycle). The intent was to place the 
instructions for the inner loops in the fast memory and the necessarily 
large volume of data, as well as the outer-loop instructions, in the 
main memory. The graph shows the effects of changing some of the 
assumptions. 



The speed differential between having and not having instructions 
separated from data arises from delays in iristruction fetches when mem- 
ory units are busy with data. This effect varies from problem to prob- 
lem, being less pronounced for problems that are arithmetic-limited and 
more pronounced for logica1 problems. 

The crosses in Fig. 15.2 are isolated points that show the effect of 
replacing the 0.6-ysec instruction memories by a pair of the 2.0-psec 
memory units used as instruction memories only. The resulting per- 
formance change is small for the mesh problem, which is arithmetic- 
limited, but larger for the instruction-access-limited Monte Carlo 
pro blem. 

Arithmetic- and Instruction-unit Speeds 

Although everyone realized the effect of arithmetic speed on over-al1 
computer performance, it was not unti1 the simulator results became 
available that the true importance of the instruction-unit speeds was 
recognized. Figures 15.3 and 15.4 show a two-parameter family of curves 
giving the computer speed as a function of average arithmetic-unit and 
instruction-unit times. 

Figure 15.3, in which the arithmetic time is the abscissa, shows an 
interesting saturation effect, where the computer performance is inde- 
pendent of arithmetic time below some critica1 value. Thus it makes no 
sense to strain execution speeds if the instruction unit is not improved 
correspondingly. The curves in Fig. 15.4 show a similar saturation 
effect as tlhe instruction-unit times decrease. Thus each unit places a 
performance ceiling on t'he other unit. 

A frequently quoted fallacy is that the goal of improved computer 
organization is to increase the efficiency of the arithmetic unit. Actually 
this is not the goal itself. Arithmet'ical efficiency depends strongly on the 
mixture of arithmetic and logic in a given problem, and a general-purpose 
computer cannot be equally efficient on al1 problems. Moreover, the 
simplest way to increase arithmetic-unit efficiency in an asynchronous 
computer is to slow down the arithmetic unit. 

The rea1 goal of improved organization is to obtain maximum over- 
al1 computer performance for minimum cost. As long as efficiency 
remains reasonably high for a variety of problems, one t'ries to increase 
arithmetic speed, stopping this process when the over-al1 performance 
gain no longer matches the increase in equipment and complexity. 
Arithmetic-unit efficiency is a by-product of this design process, not the 
prime variable. 



Concurrent Input-Output Activity 

Because of the widely different time scales for input-output activity 
and internal instruction execution, the simulator cannot take into 
account the availability or nonavailability of specific data from input- 
output units. We can, however, observe the combined effect of the 
input-output devices operating a t  different rates simultaneously with 
computing. 

The input-output exchange is designed for an over-al1 peak rate of one 
word every 10 microseconds. The high-speed disk synchronizer has a 
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FIG.15.3. Computer speed vs. arithmetic times for various instruction-unit times. 
Four levels of look-ahead; four units of 2.0-,usec memory ;two units of 0.6-,usec memory. 

design limit of one word every 4 microseconds. Since the mechanical 
devices must take priority over the centra1 processing unit in addressing 
memory, the computation slows down in memory-busy conflicts. 

Figure 15.5 shows an example of how internal computing speed is 
affected by input-output rates. At the theoretical choke-o$ point the 
input-output devices take al1 the memory cycles available and stop the 
calculation. I t  may be seen that this condition can never arise for any 
input-output rates presently attainable. 

A 7030 system with only one or two memory units has lower per- 
formance than a system with more units, for three reasons: (1) the 



interna1 speed of the system is reduced by the loss of memory overlap; 
(2) the input-output penalty is higher when a given amount of input-out- 
put is run concurrently with the computation; and (3) the amount of 
data that can be held in the memory a t  one time is smaller, requiring 
more input-output activity to do the job. Xote that increasing the 
memory size on a conventional computer effects improvement only with 
respect to the third of these factors. 
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FIG.15.4. Computer speed vs. instruction-unit times for various arithmetic-unit times. 
Same assumptions as in Fig. 15.3. 

Branching on Arithmetic Resdts 

Since a branch instruction spoils the smoot,h flow of instructions to the 
instruction unit, any branch in a program mi11 cause some delay, but the 
most serious delays occur when branching is conditional on results pro- 
duced by the arithmetic unit, which cannot be determined by t'he instruc- 
tion unit in advance. 

There are two basic ways in which branches conditional on arithmetic 
results can be handled by the computer: 

1. The computer ean stop the flow of instructions unti1 the arithmetic 
unit has completed the preceding operation and t'he result is known, 
before fetching the next instruction. This procedure causes a delay a t  
every such branch, whether taken or not. 



2. As has been mentioned, the computer can "guess" which way the 
branch is going to go before it  is taken, and proceed with fetching and 
preparing the instruction along the most likely path; but, if the guess was 
wrong, these instructions must be discarded and the correct path taken 
instead. 

A detailed series of sirnulator runs were made to determine which was 
the better approach. Some genera1 observations were: 
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FIG.15.5. Effect of input-output rate on interna1 computing speed. For Monte 
Carlo calculation. 

1. For a problem with considerable arithmetic-data branching, the 
performance can vary by + 15 per cent depending on the way in which 
branching is handled. 

2. Holding up a t  every branch point seems less desirable than any of 
five guessing procedures: condition will be on, condition will be o$, condi-
tion remains unchanged, branch will be taken, branch will not be taken. 

3. Unless there is an unusual situation in a problem with a very high 
probability that the branch will always be taken, the least time will be 
lost if one assumes that branching will noi occur. 



4. The theoretically highest performance would be obtained if each 
branch instruction had a guess bit, which would permit the programmer to 
specify his own guess of the most probable path. This would place a 
considerable extra burden on the programmer for the gains promised. 
(It would also use up many valuable operation codes.) 

5. There is a feedback in such design decisions. Knowing the way in 
whkh t he machine ('guesses" the branches, n a n y programmers will write 
their codes so as to gain speed. The result is that the statistics of actual 
experience will be biased in favor of the system chosen, thus "proving" 
that it was the right decision. 

Outcome of Simulator Studies 

The results of the simulator studies led to these design choices for the 
7030 system: 

1. Four levels of look-ahead are provided. 
2. The standard memory complement is two instruction memories and 

four data memories, al1 with 2-psec cycle t,ime; fewer or more memory 
units are optional. (The increase in performance possible with the faster 
0.6-psec instruction memories was felt not large enough to offset the 
reduction in storage capacity-1,024 words for each fast unit as compared 
with 16,384 words for each slower unit.) 

3. The addresses of the four data memories are interlaced (i.e., four 
consecutive addresses refer to different memory units); likewise the 
addresses of the two instruction memories are interlaced separately. 

4. For a branch instruction conditional on the result of arithmetic- 
unit operations, the instruction unit proceeds as if the branch will fail. 

It should be noted here that these simulation st,udies were carried out 
before the detailed design of the computer and so the simulated mode1 did 
not reflect accurately al1 subsequent design decisions. The actual com- 
puter performance should not be expected to follow the patterns of Figs. 
15.1 to 15.5 exactly. 

15.3. Description of the Look-ahead Unit 

For expository reasons this description of the look-ahead unit and its 
operation is much simplified. Many of the checking procedures and the 
special treatment of interna1 data registers have not been included. At 
severa1 places processing is described as if it were sequential, when it 
actually is overlapped. 

Each of the four levels of the look-ahead unit is composed of a number 
of registers, tag bits, and counters (Fig. 15.6). The registers contain the 
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following information, which will be required a t  the time the instruction 
in this look-ahead level is to be executed: 

Operation code. Contains the partially decoded operation. 
Operand. Contains, in general, the data on which the operation is to 

be performed. 
Indicators. Contains a record of any of fifteen indicators that are to be 

set a t  execution time. Their setting is a result of instruction preparation 
in the instruction unit or of errors detected during look-ahead operation. l 
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FIG.15.6. Look-ahead registers. 

Instruction counter. Contains the location of the instruction immedi- 
ately following the instruction held in this level. 

The following tag bits are used for contro1 purposes: 

Level Jilled bit. Indicates that the operand field has been filled. 
Level checked bit. Indicates that the data have been checked and that 

their check bits have been converted to the form required by the par- 
ticular operation to be performed. 

The fifteen indicators are: machine check, instruction reject, operation code invalid, 
address invalid, data store, data fetch, instruction fetch, index Jlag, index count zero, index 
value less than zero, index value zero, index value greater than zero, index low, index equal, 
index high. 



Internal operand bit. Indicates that the operand is to come from an 
interna1 register rather than memory. 

Instruction counter bit. Indicates that the instruction-counter field of 
this level is valid for use during an interrupt. 

Look-ahead operation code bit. Indicates that the information in the 
operation-code field is to be used only by the look-ahead control. 

'Cj70rd-boundary crossocer bit. Indicates that the VFL operand crossec a 
word boundary. 

N o  operation bit. Indicates that the instruction is to be suppressed 
and treated as though i t  were a NO OPERATIOX instruction. 

From bit. Designates the level f rom which forwarding can take place. 

Five ring counters control the operati011 of the look-ahead unit, as 
they advance from one level to the next: 

Instruction un i t  counter. De~ignat~es the next level of look-ahead to 
receive an instruction from the in~t~ruction unit. 

Operand check counter. Designates the next level a t  which an operand 
is to be checked. 

Transfer bus counter. Designates the next level to be tralisferred to 
the working registers of the arithmetic unit. 

Arithmetic bzrs counter. Controls the functions necessary for proper 
operation of tjhe interrupt system. Also designates the next level to 
have its indicator field entered into the indicator register and to receive 
any result from the arithmetic unit for 1at)er storing. 

Store check counter. Designates the next level from which an operand 
is to be sent to storage. For non-store-type operations, this counter 
generally advances with the arithmetic-bus counter. 

The counters advance from level to level under their own control. 
For example, after the instruction-unit counter has completed the loading 
of an instruction into level 1, it will advance to level 2, ready to receive 
an instruction for that level. After an operand has arrived, the operand- 
check counter can cause the operand in level 1 to be checked; the counter 
then advances to level 2 to check the operand there. Except for inter- 
locks to keep the counters in proper sequence, the counters are free to 
advance as soon as their work is completed. 

15.4. Forwarding 

Each time a store operation is loaded into a look-ahead level, the oper- 
and address is placed in the common Eook-ahead address register (Fig. 
15.6), and this level is tagged by turning o n  the from bit. The address 
of each subsequent dàta fetch is compared with the contents of the look- 
ahead address register, and, if they are equal, the data fetch is canceled 



and the operand field is forwarded from the tagged level. This forward- 
ing process saves memory references and prevents the use of obsolete 
data. 

When the look-ahead address register is not busy with a store instruc- 
tion, it contains the address of the most recently loaded operand. Thus, 
if severa1 successive references are made to the same address, only one 
memory fetch is required, the other levels receiving their operands by 
forwarding. Consider these instructions for forming A3: 

LOAD, U 

MCLTIPLY, U 

MULTIPLY, U 

The operand A is fetched from address a once for LOAD and then supplied 
to the two MCLTIPLY instructions by forwarding. 

Since only one look-ahead address register is provided, the look-ahead 
unit can handle only one sture-type operation a t  a time. 

15.5. Counter sequences 

Instruction-unit Counter 

Figure 15.7 shows, in simplified form, the sequence of operations initi- 
ated by the instruction-unit counter at  a giveii look-ahead level. Three 
types of instructions must be distinguished: 

1. Instructions for which no data are to be fetched, such as branch 
instructions, which require no operand a t  all, or instructions with immedi- 
ate addressing, where the operand is obtained from the instruction unit 
as part of the instruction 

2. Instructions requiring an operand fetch from memory and 
3. Store-type instructions 

As soon as the instruction is loaded, a test for the type of instruction is 
made. If no more data are needed, the level is immediately tagged as 
having been filled and checked, and the sequence is ended. If the instruc- 
tion is of the fetch type, a comparison is made with the look-ahead address 
register to see whether the data should be forwarded from another level, 
and the operand request (which had already been initiated by the instruc- 
tion unit to save time) is canceled; otherwise the look-ahead address 
register, if available, is set to perniit forwarding of this operand to another 
level. 

A store-type instruction sequence must wait unti1 the look-ahead 
address register is free of any earlier store operation, and the register is 
then set up for possible forwarding to another level. 
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FIG.15.7. Instruction-unit counter advance sequence. 

The instruction-unit counter is interlocked t'o prevent it from advancing 
to a level still occupied by the store-check counter. This prevents new 
information from destroying data yet to be stored. 

Operand-check counter action (Fig. 15.8) is not required after for- 
warding, since the operand will already have been checked by the instruc- 
tion unit and the level-checked bit will be on. If the bit is o$, the 
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FIG.15.8. Operand-check counter advance sequence. 

counter will wait unti1 the operand has arrived before proceeding with 
checking and error correctioii. 

This counter is interlocked so that it will not pass the instruction-unit 
counter. 

Transfer-bus, Arithmetic-bus, and Store-check Counters 

Figures 15.9 and 15.10 illustrate some simple sequences for these three 
counters as applied to floating-point instructions. Each counter is 
appropriately interlocked with its predecessor. 

The transfer-bus counter sends the completely assembled and checked 
information held in the current look-ahead level to the arithmetic unit 
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FIG.15.9. Transfer-bus, arithmetic-bus, and store-check counter advance sequences 
for floating-point fetch-type operations. 
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and waits until the information is accepted. This counter must test the 
no-operation bit', which, if on, would indicate that an error had occurred 
and require that the operation be suppressed. 

The arithmetic-bus counter first tests whether an interrupt is waiting, 
which would cause the present sequence to be abandoned and control to 
be turned over to the interrupt system. If there is no interrupt, the 
fifteen indicator settings, previously aecurnulated during the preparatory 
steps in the instruction unit, now become valid and are set into the indica- 
tor register for test and possible interrupt after execution of the instruc- 
tion a t  this level. If the instruction is of the store type, the arithmetic- 
bus counter is responsible also for transmitting the operand from the 
arithmetic unit to the look-ahead level (or directly to the destination when 
the address refers to an interna1 CPU register). 

The store-check counter has little to do when no storing is required. 
For a store-type instruction this counter handles the transfer of the 
operand via appropriate checking equipment either to its destination if 
the address is in the index memory or to the memory bus if the address is 
in main memory. 

There are numerous and more complex variations of t,hese counter 
sequences, many of which involve more than one level of look-ahead. A 
variable-field-length instruction may use one level to hold the various 
items of operation-code information. The operand will appear in the 
next level, or in the next two levels if a memory-word boundary must be 
crossed. When a result is to be returned to memory, one or two addi- 
tional levels are needed. Any progressive indexing requires a level to 
control the return of information to index storage. At each extra level 
the look-ahead unit inserts a pseudo operation code to control the action 
reqiiired. An extreme case is a VFL ADD TO MEXORY instruction with 
progressive indexing, which may require six successive levels (two levels 
being used twice). 

15.6. Recovery Aher Interrupt 

Whenever there is a change in instruction sequence, either by an inter- 
rupt signal or by a (successful) branch operation, the look-ahead unit 
must start recovery action. We shall describe the interrupt procedure 
as an illustration. 

As soon as the arithmetic-bus counter senses an interrupt, the instruc- 
tion unit and arithmetic unit are signaled to stop preparing and executing 
more instructions. The interrupt system is disabled temporarily. 
The look-ahead ho.clsecleaning mode is turned on. 

The instruction-unit counter stops where it is. The operand-check 
and transfer-bus count'ers are allowed to advance until they reach the 
same level as the instruction-unit counter. The arithmetic-bus counter 



identifies each level, for which the instruction unit has previously modi- 
fied an index word in the index memory, by tagging it as a pseudo store 
level. The old contents of the index word are placed in the pseudo 
store level, and the store-check counter is responsible for storing this word 
in the index memory. 

Eventually al1 counters will be a t  the same level, and the look-ahead 
unit will then be empty. The proper instruction-counter setting is sent 
to the instruction unit to return that unit to the point in the program a t  
which interruption occurred. The housecleaning mode in the look-ahead 
is turned off, and the instruction and arithmetic units are allowed to 
resume operation. 

At this point the instruction unit has to turi1 o$ the indicator that 
caused the interrupt and fetch the extra instruction from the proper loca- 
tion in the interrupt table (see Chap. 10). This extra instruction is pre- 
pared and executed, after which the interrupt system is again enabled 
(uiiless the extra instruction specified that the system remain disabled). 
The temporary disabling of the interrupt system prevents secondary 
interrupts, which might cause the extra instruction to be suppressed and 
would leave no trace of the current interruption. The instruction unit 
is then ready to continue with norma1 loading of the look-ahead unit. 

15.7. A Look-back at the Look-ahead 

The 7030 look-ahead unit is a complex device, in t'heory as well as in 
practice. It contains many high-speed register positions to allow the 
system to race down the road and extensive controls for recovery if i t  has 
missed a turn. Even so, cost and other practical engineering considera- 
tions cause the look-ahead unit in the 7030 to fa11 far short of the idea1 
envisaged: a virtual memory with unlimited capacity and instantaneous 
recovery. Xevertheless, the unit does substantially raise performance by 
overlapping waiting periods and housekeeping operations with the execu- 
tion of instructions. 

As mentioned a t  the start, the basic reason for a look-ahead unit in a 
high-speed computer is the large discrepancy between the memory-cycle 
times and the instruction-execution times. If a much faster memory 
unit of equa1 size could be designed, the look-ahead unit could be greatly 
simplified or even eliminated. Improvements in memory technology are 
to be expected, but such improvements are again likely to be equaled or 
surpassed by corresponding improvements in arithmetical circuits. Thus 
the mismatch may be expected to continue in the future, indicating that 
many more refinements of the look-ahead principle will be applied in 
future high-performance computers, perhaps to a hierarchy of memories. 



Chapter 16 

THE EXCHANGE 
byW. Buchholz 

General Description 

The function of the exchange is to direct the information flow between 
input-output or external storage units and interna1 memory. It transfers 
data between external units and any part of the main memory inde- 
pendently of the computer, and so it permits a number of external units 
to function simultaneously with tlhe processing of data in the computer. 
Furthermore, the exchange provides a buffering action: for it  transfers 
data on demand, as required by the unit, using main memory as buffer 
storage. 

The exchange contains the common contro1 facilities that are to be 
time-shared among the external units, thus keeping these units as simple 
as possible yet maintaining fully overlapped operation. The exchange 
also does the necessary bookkeeping of addresses and the assembly or dis- 
assembly of information without taking t'ime away from the computer or 
from the interna1 memory. The only computer time involved is that 
needed to start and restart the operations. The only main memory 
cycles required during external operations are those needed to transfer 
the data to or from the fina1 locations in main memory; these cycles are 
sandwiched between computing operations without interfering with the 
computer program except for the slight delays that may occur when the 
exchange requires a memory cycle at, the same time as the computer. 

When it  encounters instructions that apply to external units, the com- 
puter executes al1 address modification. It sends the addresses and the 
decoded operation to the exchange, which determines from status bits 
available for each channel whether the unit required is ready. The 
exchange then releases the computer to continue with the program. 
Whenever time periods are available from other work, the exchange pro- 
ceeds to obtain the operand (the contro1 word, for instance) from memory 
and start the external unit. Thereafter, i t  carries out the data-trans-
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mission functions whenever the unit gives a request for service. Service 
requests are infrequent enough so that the exchange can handle the data 
flow for many units in an interleaved fashion. 

There are eight input-output channels in the basic exchange, with 
provisions for expanding to 32 such channels by adding identica1 groups of 
circuits. The design also provides for the addition of a large number of 
low-speed channels by further multiplexing of one of the regular channels. 

To main rnernory 
A 


Data Address 4L 

Ad 

To external units 

FIG.16.1. Data-flow paths of exchange. 

Regardless of speed, al1 channels are logically independent. Each 
channel can transmit data simultaneously with other channels, up to 
a maximum determined by the data-transmission rates. For simul-
taneous operation, only one input-output unit is connected to each chan- 
nel. Where sequential operation is adequate, it may be desirable to 
share input-output contro1 circuits among more than one input-output 
unit and operate the units on a single channel; magnetic tape units, for 
example, are provided with this equipment-sharing facility. 

Each channel has an address, which becomes the address of the particu- 
lar unit physically and electrically connected to that channel. When 
there is switching among multiple units connected to one channel, a 



second address must be given to select the unit to be connected to the 
channel before the operation to be performed by that channel is specified. 

In a sense, the exchange is a separate special-purpose, fixed-program 
computer. It receives directions from the main program in the form of 
predigested instructions and control words. In general, the exchange 
performs those functions that remain unchanged from one job to the next, 
and it does such iimited jobs more efficiently than the main computer 
could do them. Functions that vary from one job to the next, such as 
editing the data, are left to the program in the main computer. Editing, 
in fact, requires some of the most sophisticated features of the computer. 

A simplified diagram of the data-flow paths of the exchange is shown in 
Fig. 16.1. This diagram is the basis for the brief discussion to follow. 

16.2.  Starting a WRITE or READ Operation 
The heart of the exchange is a small, l-ysec core memory which has 

space for a limited amount of data and control information for each chan- 
nel. In a single l-psec cycle, a word can be read from this memory, 
modified, and returned to its location. 

When the exchange receives a WRITE or READ instruction from the com- 
puter, i t  tests certain status bits before accepting the instruction. Status 
bits for each channel are stored in appropriate locations of the exchange 
memory. The exchange then obtains the control word specified by the 
instruction from main memory and stores i t  in the exchange memory. 
Each channel has a location for the current control word assigned to it. 
These contro1 words are modified during data transfer to keep track of 
addresses and counts. 

16.3. Data Transfer during Writing 
The exchange also has a data-word location for each channel. This 

serves as a temporary buffer for data during transfer. (Actually, the 
faster channels have a pair of these locations for extra speed, but the logic 
is the same and will be explained as if only one such location existed.) 

To start a WRITE operation, the exchange goes through a control-word 
modification cycle. I t  fetches the control word from the appropriate 
location in the exchange memory, increases the data word address by 1, 
decreases the count by 1, and returns the modified control word to its 
exchange memory location. The modification takes place in the control- 
word modification unit shown a t  the right in Fig. 16.1. The unmodified 
data-word address, extracted from the origina1 control word, is used to 
fetch the first data word from main memory and store it in the exchange 
memory a t  the data-word location for this channel. The exchange then 
sends a signal to the input-output unit to start writing. 

Writing takes place one byte a t  a time, where a byte consists always of 
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8 information bits and 1parity-check bit (odd-count parity). When the 
unit is ready to write a byte, it sends a service request to the exchange. 
The exchange starts a l-psec memory cycle to pull the data word out of 
the appropriate location and pass it through the shift circuit shown in the 
center of Fig. 16.1. The leftmost byte is sent to the unit via a multi- 
plexing circuit while the remaining bytes are shifted left by 8 bits. The 
shifted data word is returned to the exchange memory, still within the 
same memory cycle. 

Each time a new byte is needed by the unit, the data-word cycle is 
repeated; the leftmost byte is extracted, and the remainder is shifted left. 
After the eighth such byte cycle, the data word is exhausted and a control- 
word cycle is started. The current data-word address is extracted to 
fetch a new data word while the control word is modified, adding 1 to 
the address and subtracting 1 from the count. Data transfer then con- 
t i n u e ~with the new data word. 

If the count in the control word goes to O and if chaining is indicated 
(the chain flag in the control word is set to l),the refill address is used 
to fetch the next control word from main memory, and data transfer 
proceeds. 

Thus, data transfer consists principally of l-psec data-word-shift 
cycles with control-word modification and data-word-fetch cycles inter- 
spersed every eighth byte, and occasionally a control-word-refi11 cycle. 
Since a single channel requests service only a t  intervals of many micro- 
seconds, other channels can have similar service during any l-psec period. 
The purpose of the multiplexer is to determine which channel has 
requested service, to send the channel number to the exchange memory as 
an address for selecting the appropriate data and control-word locations, 
and to gate the lines of this channel to the common data-handling circuits. 
If more than one channel requests service a t  the same time, the requests 
are handled in turn during different cycles, and no conflict arises. The 
worst-case condition occurs when al1 channels that are in operation hap- 
pen to request service a t  the same time. The traffic-handling ability 
of the exchange is determined by how many channels it can service in the 
time between successive bytes or words of the fastest unit operating. 

16.4. Data Transfer during Reading 

Reading works much the same as writing. When a unit requests ser- 
vice, the incoming byte is gat,ed through the multiplexer into the right- 
most byte position of the current data word while the remaining bytes are 
shifted 8 bits to the left. Thus bytes are assembled during eight succes- 
sive cycles into a word, which is then sent to main memory according to 
the current data-word address in the control word. Control-word modifi- 
cation and refill cycles are exactly the same as before. 



The same data-word shifting and control-word modification equip- 
ment is used for both reading and writing. Read and write cycles from 
different channels may be freely intermixed; the direction of flow during 
a given l-psec cycle is deterrnined by bits in the data-word location for 
each channel; these bits are set up by the instruction. 

The end of a writing or reading opcration may be sensed by the unit 
and signaled to the exchange; or it may be sensed by the exchange when 
the count in the control word goes to O and the chain flag in the current 
control word is O, so that there is no control word to follow. In either 
case the exchange instructs the unit to stop. 

The exchange then attempts to interrupt the computer program, to 
report (1) that the operation has ended and (2) whether it ended nor- 
mally or any unusual conditions arose, such as a programming error, 
data error, machine malfixnctioning, or the end of tape or paper. The 
address of the interrupting channel is also sent to the computer. Usually 
the program interrupt occurs a t  the end of the instruction currently being 
executed in the computer. 

Occasionally the interrupt must be delayed. The program may have 
disabled the interrupt mechanism, perhaps to complete the processing of a 
previous input-output interrupt . The exchange then stores the appropri- 
ate status indications in the control-word location of the exchange mem- 
ory and tries again later. When the interrupt finally succeeds, i t  is 
handled in the same way as if it had just happened. 

There can be no confusion caused by simultaneous interruptions from 
more than one input-output unit. The exchange automatically presents 
them to the computer one a t  a time. 

Interruptions due to a channel signal (see Chap. 12) are handled in the 
same way as end-of-operation interrupts, even if the channel signal is not 
the direct result of a previous operation. 

16.6. Multiple Operations 

Multiple-block WRITE and READ operations (see Chap. 12) are indicate'd 
by a multiple Jlag bit in the control word. When the unit signals that the 
operation ended normally, the exchange immediately restarts the unit 
just as if a new instruction had been given, and the program is not inter- 
rupted a t  this time. 

16.7.CONTROL and LOCATE Operations 

The operations CONTROL and LOCATE are set up in the same manner as 
WRITE, except that a different instruction line is activated. The control 



or address information is then transmitted to the unit as if it were data. 
Termination is also handled the same way. 

16.8. Interrogating the Control Word 

As writing or reading proceeds, the exchange continually modifies the 
appropriate control words stored in the exchange memory. The program 
may interrogate the current control-word contents during the operation 
by giving a COPY CONTROL WORD instruction, which transfers the current 
control word to a specified location in main memory. This operation 
finds use mostly in specialized supervisory programming; ordinary pro- 
grams seldom require i t  because i t  is more convenient to wait for an 
automatic interrupt a t  the end of the operation. 

It should be noted that the origina1 control word, which is located a t  
the main memory address specified by the instruction, is not modified in 
any way by the exchange. I t  retains the initial settings for use in sub- 
sequent operations. 

16.9. Forced Termination 

Occasionally it may be desirable to force an input-output operation to 
come to a halt; for example, a programming error may give rise to an 
endless control-word chain. To initiate the termination sequence 
immediately, a RELEASE instruction may be given even while an operation 
is in progress; RELEASE may also be used sometimes to reset the channel 
status to normal. 

The RELEASE instruction functions in the same manner as the usual 
end-of-operation sequence, except that any exceptions (error conditions, 
etc.) are not reported because they are presumably no longer of interest. 



Chapter 17 

A NONARITHMETICAL SYSTEM 
EXTENSION 

icy S. G. Campbell, P. S. Herwitz, and J. H. Pomerene 

17.1. Nonarithmetical Processing 

One of the most interesting current trends in the computer field is 
tJhe development of n~narit~hmetical Xonarithmetical prob- t,echniques. 
lems are being attacked with increasing success, particularly in the area of 
the "soft sciences." Efforts in the fields of artificial learning, character 
recognition, information retrieval, gaming, and language translation 
accourit for a rapidly growing percentage of total computational activity. 
During the next few years it  may be expect8ed that work in such areas will 
materially enhance our understanding of the nature of learning, thinking, 
theorem proving, and problem solving. 

Even problems considered to belong to the "hard sciences," which are 
usually associated with complex mathematical computations, may involve 
an enormous amount of nonarithmetical data processing. Weather fore- 
casting is an excellent example. The scientist tends to view the weather 
as a tremendous hydrodynamics problem on a rotating sphere, in which 
the boundary conditions are very complex and the equations very difficult 
to manage. From another standpoint, however, the weather system 
represents a problem in information collection, transmission, storage, and 
processing-with al1 the characteristics to be expected of any large-scale 
file-maintenance activity. Much of the data, such as cloud type, are 
not really numerical, and the processing that such data usually undergo is 
not primarily arithmetical. Moreover, the data are highly perishable for 
most purposes-yesterday's weather is of interest only to the statistician. 
The weather system is in fact a very large real-time information-handling 
system, in which the value of the data begins to decrease the minute it  is 

Note: Section 17.1 is an introduction by S. G. Campbell, and the rest of the chap- 
ter is taken from a paper by P. S. Herwitz and J. H. Pomerene presented a t  the 1960 
Western Joint Computer Conference. 
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taken and has diminished markedly by the time it can be transmitted to a 
potential user. 

It seems characteristic of the conventional application of computers to 
the hard sciences that the resulting computation is relatively regular and 
that the operations are likely to consist mostly of specialized, complex 
operations. This is why scientific computers have acquired very power- 
fu1 floating-point-arit hmetic and indexing facilities. By contrast, con- 
ditions are chaotic in the nonarithmetical area: activities are likely to be 
irregular and to consist of relatively rudimentary operations, such as basic 
logica1 operations, counting, table look-up, and the simple process of 
hunting for some particular piece of information-looking for the pro- 
verbial needle of useful information in a haystack of noise. 

To characterize the weather of the world in reasonable detail requires a 
rather staggering amount of data :perhaps lo9numbers. The problem of 
too much data and too little information is not limited to the weather 
system; as much, or more, information is required to characterize the 
operation of a large business, a large government organization, or a large 
social activity. h'o one person could look a t  al1 this information in a 
lifetime, much less during the useful life of the information itself (for 
alt hough suc h information dies much more slowly than me teorological 
information, it perishes none the less). What the user often requires is 
some sort of characterization of some subset of the information in his 
system. Usually this characterization is something statistical: What is 
the net operating profit or loss from Flight 123 on Tuesdays over the 
past year? Since the user cannot look a t  al1 the data, he attempts to 
obtain its essential meaning from a weighted statistical average or to 
determine cause-and-effect relationships by correlating events that look 
as though they might be related. 

Another difficulty is that it is frequently impossible to te11 a t  the time 
the data are taken whether they are significant or not. This is particu- 
larly true of a system that collects data automatically; it may be more 
economica1 to let the system function at  a constant data-gathering rate, 
rather than to try to speed it up when the information appears to be more 
important (for example, when the weather is bad) and slow it down when 
the information seems less pertinent. A data-processing system usually 
contains a great dea1 more data than it really needs. The main purposes 
of most data-processing installations are to reduce the amount of data 
stored, to make the significant data more accessible, and to provide 
effective statistical characterizations. Reduction in the amount of data 
stored may result from more efficient formats and encoding of informa- 
tion, from storing only primary data from which the system can generate 
other data, and from reducing the time lag in processing the data, so that 
the system does not need to store so much of it a t  any given time. Mak-



ing data more accessible is sometimes the most significant function per- 
formed by the data-processing system, particularly in the routine opera- 
tion of an organization. Provision of statistica1 summaries is frequently 
most important in providing information for management decisions and 
indicating genera1 trends, although statistical information may also be 
used in the daily operation of a business. 

Thus the primary prciblenl in dniost any field of knowledge is io map 
a large quantity of relatively disorganized information into a much 
smaller, more highly structured and organized set of information. Fre-
quently i t  is not even the information that is important but its pattern. 
The most rudimentary attempts to find such patterns in information 
involve classification. Perhaps the first step, once the information has 
been acquired, is to arrange i t  in such a way that we can locate any 
particular subset required without having to look a t  al1 the information. 
(The information forms a set, the nature of the set being determined by 
whatever it was that made us take and keep the information.) The 
simplest way of accessing a subset would be to look a t  each piece of infor- 
mation to see whether it belonged to the subset or not. If there are prop- 
erties of particular value, we may order the information in terms of these 
properties. For example, if the information consists of words to be put 
into a dictionary, we order it in terms of the first letter of each word; this 
is of great help in locating any specific known word, although it does not 
help a t  al1 if the object is to find al1 the words that end in x. 

Sorting, that is, ordering data in terms of some property, is character- 
istic of this type of activity. If the amount of information is large, the 
expense of storage dictates that sorting be with respect to the most impor- 
tant characteristic. It would be too wasteful of expensive storage to 
store information sorted on very many different chara~t~eristics. As 
new information is needed, it must be merged with the old. 

Sorting, merging, matching, etc., are, of course, the basic operations of 
file maintenance. In fact,, the rtct ivity of business data-processing instal- 
lations is quite typical of the nonarithmetical information processing we 
are discussing here. For that nlatter, so is much of the activity of 
scientific computing installations (if they would only admit it), for we 
must include the assembling, compiling, and editing functions that are 
peculiar to the programming and operating of the computer system itself. 

File maintenance consists essentially in processing sets of operand data 
from two data sources to form a set of result data going to one data sink. 
The data sources may be visualized concretely as two input tapes, con- 
sisting of a file and trarisactions against that file, and the data sink may 
be visualized as an output tape, the updated file; but the same concept 
holds if the data are in core memory or stored in some other medium. 
The common case of multiple outputs rnay be represented by a single 



sequence of results which are switched to one of severa1 destinations as 
required. 

The concept of operating on two large sets of operand data to form a 
set of result data appears to be fundarriental to nonarithmetical process- 
ing. I t  leads naturally ts the idea that a processor, with built-in facilities 
for creating sources and sinks to generate and operate on long data 
sequences, would be a much more effective t001 for large nonarithmetical 
applications than a conventional computer, which operates one field a t  a 
time. In such a processor the objective is to fetch two sets of data 
independently accessed from memory, to combine them in terms of certain 
processes, and to produce a third set which is put back independently into 
memory. The common processes of most interest are the elementary 
arithmetical operations, the logica1 operations, control operations, and 
comparison operations ( < , 5 ,  > , 2 ,  = , # ) . Table loolc-up is required 
to define those operations which cannot readily be described in more 
elementary terms. (For example, the inputs might represent a pair of 
cities, and the output the airline fare between these cities as found in a 
table of fares.) One of the two sources or the sink may be missing. 

Another concept is suggested by observation of the operation of a 
punched-card machine, where the same relatively simple process may be 
repeated many times for successive cards as they pass through the 
machine. There the process is usually defined by means of a plugboard 
which opens or closes paths for the data flowing through the machine. 
One is thus led to think of an electronic version of the plugboard, which is 
set up before starting and remains set unti1 a change is indicated. Hence 
we speak of operating our processor i11 the set-up mode. Because control 
data are placed in high-speed registers, there is essentially no access time 
for instructions. The speed of the process is determined entirely by the 
data flow rate into or out of memory, the data being fetched or stored 
according to preset, but possibly very complex, indexing patterns. 

Among the things we may wish to do, while passing data through the 
processor, are: ( l )  examine any of the three sets of data to look for a 
particular piece of information; (2) count the frequency of occurrence of 
various events in each set, including the occurrence of relationships 
between subsets of the data as well as the occurrence of the distinguished 
subsets themselves; (3) react to these occurrences by altering the process; 
and (4) perform a sequence of table look-ups, with some mechanism for 
determining when the look-up operation is to terminate. Having set up 
and started a process, we need, of course, a mechanism for breaking out 
of the set-up mode as necessary and for determining the state of affairs 
a t  that time. 

The IBM 7951 Processing Unit, to be described in this chapter, was 
designed around these concepts to achieve maximum performance in a 



broad area of nonarithmetical information processing. The 7951, itself 
a machine of substantial size, is not a complete datla processor; it is 
attached to a regular 7030 computer which performs the more con-
ventional operations a t  high speed (Fig. 17. l ) .  The extended system, 
which is referred to as the IBNI 7950 Data Processing System, includes 
also two fast 1,024-word memory units, with a read-mite cycle time of 
0.7 psec, aiid a very fast magneti@tape systexn capable of sixultaneous!y 
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FIG.17.1. Xonarithmetical extension of the 7030. 

reading and writing a t  a rate of 140,000 words of 64 bits per second. The 
memory and tape units are important contributors to the over-al1 per- 
formance of the system on nonarithmetical problems, but we shall be 
concerned here only with the logic of the 7951. 

17.2. The Set-up Mode 
Data pass through the 7951 Processing Unit serially, byte by byte. 

The byte, a quantity of 8 bits or less in parallel, is the basic information 
unit of the system. The set-up mode is primarily a design approach 
whose aim is (1) to select bytes from memory according to some pattern 
set up in advance and (2) to keep a steady stream of such selected bytes 



flowing through a designated process or transformation and thence back to 
memory (Fig. 17.2). Emphasis is on maximum data flow rate, so that 
the typicaly large volumes of information can be processed in minimum 
time. Processing time per byte is held to a minimum by specifying, 
in advance, byte selection rules, processing paths, and even methods for 
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FIG.17.2. Simplified data flow diagram. 

handling exceptional cases; hence, decision delays are suffered only once 
for a long sequence of bytes instead of being compounded for each byte. 

17.3. Byte-sequence Formation 

The selected bytes are taken from words stored in memory according to 
either simple or complicated patterns as chosen by the programmer. 
For technical reasons memory is organized into 64-bit words, but this 
artificial grouping is suppressed in the 7951, so that memory is treated 
as if i t  consisted of a long string of bits, and any one of these can be 
addressed for selection. As in the 7030, up to 218 words of memory can 
be directly addressed, and, since the word size is exactly 26 bits, an address 
consists of 24 bits: 18 to select the word and 6 to select the bit within the 
word. 

Data are transferred to and from memory 64 bits in parallel; selection 
to the bit leve1 is accomplished by generalized operand registers called 
source or sinlc units (Fig. 17.3). There are two source units P and Q, 
which feed operands to the processing area of the 7951, and one sink unit 
R, which accepts results from the processing area. Each source or sink 
unit contains a switch rnatrix, which allows a byte t'o be selected with 
minimum delay, starting a t  any bit position within the register. To 
handle cases where a byte overlaps two memory words and to minimize 
waiting time for the next needed word from memory, each source or sink 
unit is actually two words (that is, 128 bits) long. The selection of these 



bytes is controlled by the low-order 7 bits of a sequence of 24-bit addresses, 
which are generated by the pattern-selection units. The byte output of a 
source unit is fed into the processing area through a bit-for-bit mask, 
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output 
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FIG.17.3. Source unit. Sink unit is similar, except for data flow reversal. 

which enables the programmer to select any subset of the 8 bits, including 
nonconsecutive combinations. 

17.4. Pattern Selection 
The data input to the system may be highly redundant to any particu- 

lar problem, and so a powerful mechanism is provided for imposing selec- 
tion patterns on the data in memory. I t  is assumed that the very effective 
input-output contro1 in the basic 7030 system will have grossly organized 
the contents of memory. For example, various characteristics may have 
been obtained for a population and recorded in uniform subdivisions of a 
file. A particular problem may be concerned m-ith only a certain char- 
acteristic drawn from each record in the file. Thus datra may be stored 
in memory in matrix form, and the problem may be to transpose the 
matrix. 

Pattern selection in the 7951 resembles indexing in other computers, 
except that here the programmer determines t he algorithm that generates 
the pattern, instead of listing the pattern itself. Each source or sink 
unit has its independent pattern-generating mechanism, which is actually 
an arithmetic unit capable of performing addition, subtraction, and count- 
ing operations on the 24-bit addresses. The programmer specifies 
patterns in terms of indexing levels, each leve1 consisting of an address- 
incrementing value I,which is successively added to the starting-address 



value S, unti1 N such increments have been applied, after which the next 
indexing level is consulted to apply a different increment. The pro- 
grammer may then choose either that incrementing continue on this level 
or that the previous level be resumed for another cycle of incrementing. 

Many other indexing modes are provided to permit almost any pattern 
of data selection. Particular attention has been given to direct imple- 
mentation of triangular matrix selection and to the iterative chains of any 
forma1 inductive process, however complex. 

In  general the pattern-selection facilities completely divorce the 
function of operand designation from that of operand processsing, except 
that  predesignated special characteristics of the operands may be per- 
rnitted to change the selection pattern in some fashion. 

The pattern-selection units determine the movement of data between 
the source or sink unit and memory, and, together with the source and 
sink units, they determine the byte flow in the processing area. The 
processing facilities aiid the selection facilities have been designed to give 
a flow rate of approximately 3.3 million bytes per second. 

I7.5. Transformation Facilities 

TWO facilities are provided for the transformation of data (Fig. 17.4). 
Extremely general operations on one or two input variables can be 

FIG.17.4. Transformation facilities. 



accomplished with the on-line table-look-up facility. Simpler operations 
can be done directly by the logic unit without involving memory look-up. 
The logic unit also provides a choice of severa1 l-bit characterizations of 
the input bytes (such as byte from P > byte from Q). These l-bit signals 
can be used to alter the process through an adjustment mechanism. 

The table look-up facility consists of two units. The more important 
logically is the table address assornbler (TA-4), which accepts byteu from 
one or two sources to form the look-up addresses that are sent to memory 
(Fig. 17.5). The other is the table extract unit (TEU), which permits 
selection of a particular field within the looked-up word. Both units 
have their own indexing mechanisms, and together they permit the pro- 
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FIG. 17.5. Formation of look-up address. 

grammer to address a table entry ranging in size from 1 bit to a fu11 word 
and starting a t  any bit position in memory. This freedonl is abridged 
only by considerations of the table structure chosen by the programmer. 

The table look-up facility also provides access to the memory features 
of existence and count. Under instruction from the TAA, the main 
memory can use the assembled address to or a 1 into the referenced bit 
position; the referenced word, as it was just before the oring, can be sent 
to the TEU. This feature may be used to indicate by a single bit the 
existence (1) or nonexistence (0) of an item in a set. In the high-speed 
memory a l may be either ored (as in rnain memory) or added into t,he 
referenced bit position, with the same provision for sending the word 
before alteration to the TEU. The ability to add 1s  into high-speed 
memory words permits use of these words as-individua1 counters. Severa1 
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counter sizes can be specified. (This counting feature is not provided in 
the main memory.) 

17.6. Statistica1 Aids 
The table look-up facility may be used to associate statistical weights 

with the occurrence of particular sets of bytes. For example, the occur- 
rence of s byte Piin the P sequence together with a byte Q j  in the Q 
sequence may be assigned a weight W,, which would be stored in a table 
and referenced by an address formed from both Pi and Qj. Alternatively, 
a memory counter may be assoeiated with each pair Pi,Qjand stepped up 
whenever the pair occurs. 
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FIG.17.6. Monitoring and statistical features with typical adjustment reactions. 

A statistical accumulator (SACC) is provided (Fig. 17.6), either to sum 
the weights W over a succession of sets of bytes or to provide a key 
statistical measure of the counting results. SACC can also be used for 
many other accumulating purposes. 

A statistical counter (SCTR) provides a way of counting the oecur- 
rences of any of a large number of events during the process. In particu- 
lar, SCTR can be designated to count the number of weights TV that have 
been added into SACC. 

17.7. The BYTE-BY-BYTE Instruction 

The table look-up unit, the logic unit, and the statistical units can be 
connected into the process in various ways by the programmer. As in a 



class of analog computers, these connections reflect the structure of a 
problem and are the electronic equivalents of a plugboard. The con- 
nection chosen by the programmer then causes each byte or pair of bytes 
sent through it to be processed in the same way; this very general process- 
ing mode is set up by the BYTE-BY-BYTE instruction. The connections, 
indexing patterns, and special conditions described below al1 form part 
of a prespecified seitip, which can be regarded as a maero-instruction 
putting the computer into a specific condition for a specific problem. 

Monitoring for Special Conditions 

The concept of a continuous process with preset specifications is most 
meaningful when applied to a large batch of data that are al1 to be treated 
the same way. Within the data entering any particular process there 
may arise special conditions that call for either momentary or permanent 
changes in the process. For example, the transformation being per- 
formed may be undefined for certain characters, and so these must be 
deleted a t  the input; or a special character may be reserved to mark the 
end of a related succession of bytes, after which the process or the pattern 
of data selection must be altered. 

Special conditions can be monitored in several ways. Special charac- 
ters can be detected by match units (Fig. 17.6), to each of which can be 
assigned a special 8-bit byte which is matched against al1 bytes passing 
by the unit. There are four match units: W, X, Y, and 2, which can be 
connected to monitor the data a t  several different points. When a 
match occurs, the match unit can perform directly one of several opera- 
tions, and it can also emit a l-bit signal indicating the match. 

A large number of l-bit signals are generated by the various facilities 
to mark key points in their respective processes. These l-bit signals, 
collectively called stimuli, can be monitored to accomplish specific opera- 
tions, such as stepping SCTR or marking the end of an indexing pattern. 
They can also be used to accomplish a much wider range of operations 
through the adj ustment mechanism : 

Up to 64 stimuli are generated by the various processing, indexing, 
and monitoring functions in the 7951. For any particular problem those 
stimuli can be chosen which represent the significant properties of the data 
passing through. With each stimulus or coincident combination of 
stimuli, the programmer may associate one or more of a large number of 
reactions on the data, the process, or the indexing. These stimulus- 
reaction pairs are called adjustments. The adjustment mechanism gives 
the programmer a direct way of picking out those elernents of the data 
which are different from the general run. These exceptional elements 
may provide the key to the pattern being sought, either because they are 
particularly relevant or distinctly irrelevant. 



17.9. Instruction Set 

Conventional arithmetical and scientific computational processes and 
al1 input-output operations are performed in the 7030 part of the system. 
When 7030 instructions are used, the system is said to operate in the 
arithrnetic mode; when the instructions unique to the 7951 Processing Unit 
are to be used, the system is placed in the set-up mode. The set-up-mode 
instructions add a variety of extremely powerful data-processing tools to 
the basic 7030 operations. The instruction formats vary in length: 7030 
instructions are either 32 or 64 bits long, whereas set-up-mode instructions 
have an effective length of 192 bits. 

Set-up-mode instructions are very much like built-in subroutines or 
macro-instructions. Just as it  is necessary to initialize a programmed 
subroutine, it  is also necessary to initialize, or set up, the processor. 
About 150 parameters and control bits may influente the process. The 
processor is set up by loading values of some of these parameters and 
setting the desired control bits in certain addressable set-up registers prior 
to the execution of a set-up-mode instruction. Certain changes in the 
parameter values or control-bit settings generate stimuli, which may be 
used to terminate the data sequence, to make automatic adjustments to it, 
or to switch to the arithmetic mode of operation. The adjustment opera- 
tions essentially constitute a second leve1 of stored program and are used 
most generally to handle exception cases. 

Thus the programmer sets up the processor to execute a set-up-mode 
instruction. The process is then started and automatically modified as 
dictated by the setup or the data. Much routine bookkeeping is done 
automatically by the several independeiit pattern-generating (indexing) 
mechanisms. Changing parameter values are always available for pro- 
grammed inspection, if automatic inspection is not sufficient for the 
particular operation being performed. 

Although most of the programming in the set-up mode of operation is 
centered around the BYTE-BY-BYTE instruction, a number of other instruc- 
tions derive from the unique organiaation of the processor. The arrange- 
ment of the data paths and processing units facilitates one-instruction 
operations for performing many of the routine collating functions, such as 
merging, sorting, and file searching and maintenance, that are so common 
to data processing. The table look-up unit is used extensively in these 
as well as in several other instructions designed primarily for the logica1 
manipulation of data. 

Since such extensive use is made of parameter tables, transformation 
tables, and other data arrays, al1 of which require large memory areas, a 
special CLEAR MEMORY instruction is provided for clearing large blocks of 
memory in minimum time and with minimum programming effort. A 



single execution of this instruction will clear as few as 64 consecutive 
words or as rnany as 2,048, as desired. Clearing 2,048 words, for exam- 
ple, takes less than 335 psec, with only one instruction access to memory. 
A fu11 memory complement of 218 words could be cleared in less than 1 
millisecond. To reset each memory word separately by ordinary pro- 
gramming would take very much longer. 

In  order to perform merging, file searching, and other such collating 
operations, it is generally necessary to specify a number of parameters, 
such as record length, file length, contml-field length and position, etc. 
In programming for the 7951, the programmer need only tabulate these 
parameters in proper order. They will then be utilized by the indexing 
mechanisms to cause data to be fetched from and returned to memory 
according to the patterns that naturally occur in such data. 

The MERGE instruction contains eight independent control seyuences 
that may be used to merge files or completely sort blocks of records. 
Options to be chosen by the programmer are concerned with whether 
files are to be arranged in ascending or descending order; whether the 
record block can be contained in a t  most half the available memory; 
and whether the control field is conveniently located a t  the start of the 
record. 

The SEARCH instruction has twelve contro1 sequences, each of which 
facilitates the abstracting from a master file of al1 records whose control 
fields bear one of six possible relationships to the control field of each 
record of a detail file. The possible relationships are the six standard 
comparison conditions < , 5 ,  > , 2 ,  = , 3 ~ .  If it is not desired to remove 
the records that meet the search condition, it is possible to tabulate their 
addresses automatically. 

The instruction SELECT is used to select from a file the record having 
the least or the greatest control field. 

For the purpose of facilitating file-maintenance operations, there is a 
collating instruction complex called TAKE-INSERT-REPLACE. When the 
operation is executed under instruction control, then a match between 
contro1 fields of master and detail record causes the master record either 
to be removed from the master file or to be replaced by the detail record. 
Under data control, the action taken, whenever control fields match, is 
indicated by the contents of a special control byte in the detail record. 
The masters can be deleted or replaced; or the detail record can be 
inserted in the master file; or, under certain circiimstances, the mainte- 
nance procedure can be interrupted when master records with special 
characteristics are located and then resumed with a minimum of pro- 
gramming effort. 



Instructions such as the collating operations described above lead to a 
considerable reduction in the length of the generalized report generators, 
file-maintenance routines, and sorting and merging programs that might 
be expected to be associated with such a computer system. 

17.1I.Table Look-up Operations 

It is often desired to be able to obtain data from or store data a t  an 
address that depends indirectly on the data itself. The ISDIRECT LOAD-

STORE instruction permits wide latitude in the formation of such addresses 
and in the subsequent mmipulation of the origina1 data. In this opera- 
tion parameters from one of the source units are used in the formation of 
an address in the table look-up unit. This primary address itself, or 
one of the two addresses found in the word at  the memory location 
specified by the primary address, becomes either the origin of a field of 
data to be entered via the other source unit or the location a t  which the 
data field is to be stored by the sink unit. The data are moved from 
source to sink, and the entire cycle is repeated. The counting and oring 
features of the table look-up unit are available to the programmer as mod- 
ifications of the basic instruction-contro1 sequence. 

The second instruction complex built around the table look-up unit is 
SEQCEXTIAL TABLE LOOK-UP, an extremely powerful but conceptually 
simple instruction for a class of data-dependent transformations. This 
instruction causes a series of table references to be made; each successive 
reference after the first is made to a table whose address is extracted auto- 
matically from the previously referenced table entry. Also, as each refer- 
ence is completed, a variable amount of data may be extracted from the 
table entry. Moreover, the indexing of the input or output data may be 
adjusted according to the contents of the table entry (this is similar to 
the operation of a Turing machine). The applications of SEQUESTIAL 

TABLE LOOK-UP &re manifold: editing for printing of numerica1 data, 
transliteration of symbols from one form to another, and scanning of 
computer instructions for assembly and compilation, to name a few. 

1'7.12. Example 

The extensive use of tables in problem solution typifies the non-
arithmetical processing approach, as will be illustrated by the translitera- 
tion of Roman numerals to Arabic. Severa1 simplifying assumptions 
have been made so that the flow chart may be easier to follow: (1) The 
data-a set of numbers expressed in Roman numerals, each number 
separated from the next by a blank (E)-are assumed to be perfect, and 
only the characters I, V, X, L, C, D, and fu are used; (2) the set of num- 
bers is terminated by two blanks; (3) the use of four successive identica1 
characters (like Roman 1111 for Arabic 4) is forbidden. Finally, the 
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FIRST TABLE- . . .- ---
t3(End of Problem): RO -B, Go to Arithmetic Mode 

l: ( l5 n 5 4  or n = 9): NRO(1) + I,Table 


I ( 2 i n 5 3 ) :  NRO(1) 

V(n =4): RO -4BQ) 

l V, Table 

B(n = 5): RO -5B(l) 
I (6 rns8) :  NRO(1) -L-

B(n = lo): RO-lOB(1) 
I ( l l r i n S l 4  or n - 19): RO-l(1) 
V(15SnS18): RO-l(1) 
X(20sns39): NRO(1) 

L(40Sn549): RO-4(1) 
C(90sns 99): RO -9(1) 

L (50 rna  89): NRO(1) L, Table 

RO-5(1)-
V(55sns58): RO-5(1) 
X(60sns89): NRO(1) 

r First Table 

+ First Table 
r First Table 

:First Table
* First Table 

First Table 

V, Table 


FirstTable 
First Table 

i- First Table 
----CI,Table 

i Vi Table 
r X2Table 

First Table 
RO-2(1) -1, Table 

V(25 ans28): RO-2(1) r V, Table 

X(305nS39): RO -3(1) :. Ones Table 


+ FirstTable 
IlTable - Ones Table 
V, Table 

Ones Table 

r First Table 

Il Table 


r V, Table 

r LX,Table 

.c First Table 
I(615; n 564 or n ~ 6 9 ) :  RO -6(1) -11 Table 

V ( 6 5 ~ns68): RO-6(1) W VI Table 

X(70sn-s 89): NRO(1) LX2 Table 


* First Table 
RO-7(1)- IlTable 

V(75SnS78): RO-7(1) r V, Table 
X ( 8 0 ~ns89): RO -8(1) r Ones Table 

-




:(100sns499 or 900sns999): NRO(1) -+Ci Table 
* First Table 

RO- lO(1) -Il Table 

V(105iinii 108): RO- lO(1) * V1Table 

XlllOSns 149 or 190snS199): RO- l ( l ) +  X1 Table 

L(150sns189). RO- l(1) * 4 Table 

C(200snr399): NRO(1) W CZTable 


i- First Table 
RO -20(1)---L I, Table 

V(205sns208): RO -20(1) r VI Table 
X(210sns249 or 290 sn5299): RO -2(1)+ X1 Table 
L(2501nS289): RO -2(1) L Li Table 

Tens Table 
+ Flrst Table 

RO-O(1) ----I, Table- V, Table 
X(10sns49 or 90snr99) :  N R O ( l ) - - - - - - +  
V(05a na08): RO-O(1) 

XI Table
* L1Table 

D(400sn ~ 4 9 9 ) :  RO -4(1) * Tens Table 

M(900s 116999): RO-9(1) 
L * Tens Table 

D(500 sns899):  NRO(1) Di Table 
First Table 

RO-50(1)- 1, Table 
V(505ans508): RO-50(1) * V1Table 
X(51.05ns549 or 590s n5599): RO- 5(l)--+ X, Table 
L(5501 nc- 589): RO-5(1) r 4 Table 

r DCl Table 
B(n=600): RO -600B(1) * First Table 
I(6Ols n 5604 or n -609): RO -6O(l) L Ii Table 
V(605 I n 5  608): RO -60(1) *. Vi Table 
X(610InS649 or 6905n5699): RO-6(1) -t X1 Table 
L(650s 115689): RO-6(1) :- LI Table 
C(700sns899): NRO(1) L 
 * DC2Table First Table 

RO -7O(l) -I, Table 
V(705 Sn  5708): RO -70(1) VI Tabk 
X(710snl749or 7905n-i799): RO-7(1) -+X1 Table 
L(7505 n 5789): RO -7(1) i- Li Table 

r Tens Table 

M(n 1000): RO- lOOOB(2) ------+ First Table 

(18 tebles; 82 words (table entries)] 

FIG.17.7. Tables for conversion from Roman to Arabic numerala. 



numbers to be transformed are al1 assumed to lie in the range from 1to 
1,000, inclusive. 

The flow chart (Fig. 17.7) shows 18 tables consisting of a total of 82 
memory words. Under each table heading a two-part entry is shown, 
the parts being separated by a colon. On the left of the colon is the argu- 
ment being looked up, followed in parentheses by an indication of the 
range in which the final number or digit must lie. On the right of the 
colon the parameters of the table word corresponding to the argument are 
indicated symbolically; for example, RO-1B (meaning "read out the 
integer 1 followed by the character for a blank") or XRO (meaning "no 
readout"). This is followed by an integer in parentheses indicating what 
data byte is the next argument (O means same byte, l means next byte, 
etc.). The arrow indicates the table in which the next argument is 
looked up. 

As an illustration, consider the transliteration of DCLXXVIII: 

1. D is looked up in the first table. The number must be in the range 
500 to 899 inclusive. Xo digit is read out. The next argument is t>he 
next data byte. 

2. C is looked up in the DI  table. The range is 600 to 899. Ko 
readout. The next argument is the next data byte. 

3. L is looked up in the DCi table. The range is 650 to 689. Read 
out 6. The next argument is the next data byte. 

4. X is looked up in the L1 table. The range of the unknown part of 
the number is 60 to 89. No readout. The next argument is t,he next 
data byte. 

5. X is looked up in the LX1 table. The range is reduced to 70 to 89. 
No readout. The next argument is the next data byte. 

6. V is looked up in the LX2 table. The range is now 75 to 78. Read 
out 7. The next argument is the next byte. 

7. I is looked up in the V l table. The range of the next digit is 6 to 8. 
No readout. The next argument is the next data byte. 

8. I is looked up in the V2 table. The digit is 7-or 8. No readout. 
The next argument is the next byte. 

9. I is looked up in the Va table. The final digit is 8. Read out 8R. 
The next argument is the second following byte (the next byte being a B). 
This would be the first byte of the next number to be transliterated and is 
looked up again in the first t,able. 

The process just described yielded the number 678 for DCLXXVIII. 
Only one instruction, SEQUENTIAL TABLE LOOK-UP,was needed. In 
fact this single instruction serves to transform an entire set of numbers, 
continuing unti1 the character-B is looked up in the first table. 



Clearly, the decision logic for the problem is incorporated in the struc- 
ture of the tables. In constructing these tables the programmer con-
centrate~ on precisely this logic; most of the bookkeeping and other 
peripheral programming considerations are automatically taken care of. 
Wherever possible, this philosophy guided the systems planning of the 
7951 Processing Unit. 





Appendix A 

SUMMARY DATA 

A.1 List of the Larger IBM Storod-program Computers 

The experience gained with earlier IBM computers played a major 
role in the development of the 7030. Because these earlier computers 
have been referred to in the text, it may be helpful to list them here. 
The computers are listed chronologically; the date of a computer is 
defined arbitrarily as the year of first public announcement. Only 
the larger computers that have been produced in multiples are shown. 
These include al1 700 and 7000 series computers preceding the 7030, as 
well as the 650. The basic 650 is hardly a large computer in com-
parison with the others, but it deserves a place in the list because of its 
widespread use and because extended versions of it are used in much the 
same applications as many of the larger machines. The list excludes 
military computers and a series of smaller stored-program computers. 

The listing distinguishes between the earlier computers constructed 
almost entirely with vacuum-tube circuits (V) and the 7000 series which is 
completely transistorized (T). Another common but not altogether 
satisfactory distinction is made between computers intended primarily for 
scientific applications (S) and those intended primarily for processing 
large files of alphanumeric data (D). In the 700-7000 series the chief 
technical characteristic distinguishing "scientific" computers is fast 
parallel binary arithmetic on numbers of fixed length, whereas the data- 
processing computers have seria1 decima1 arithmetic and alphanumeric 
operations, for processing more readily fields of different lengths, as well 
as heavier emphasis on input-output. The smallest (680) computer on 
the list and the largest (7030) do not quite fit the classification. The 
650, initially designed for numerica1 work, has found extensive applica- 
tion in data processing. The 7030, intended mainly for scientific applica- 
tions, combines the characteristics of both classes and is thus also a very 
powerful data processor. 

A genera1 description of each current comput'er will be found in the 
corresponding Genera1 Information Manual published by IBM; detailed 
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information is given in the Reference Manual for each machine. Some 
additional references to technical papers are given here. 

Year Computer Comments 

701 Parallel binary arithmetic, 2,048-word (36-bit) elec- 
trostatic memoryl 

650 Seria1 decimal arithmetic, magnetic drum memory2 
702 Seria1 decimal arithmetic, variable-field-length, alpha- 

numeric data handling, 10,000-character (6-bit) 
electrostatic memory3 

704 Redesigned 701 with new instruction set, 4,096-word 
magnetic core memory, built-in floating-point 
arithmetic, indexing, and higher speed 

705 Redesigned 702 with larger instruction set, 20,000 
characters (Model I) or 40,000 characters (Model 11) 
of core memory, higher speed, and simultaneous 
input and output 

709 Improved 704 with up to 32,384 words of core mem- 
ory, multiple input-output channels buffered in 
memory, and faster multiplication4 

705 I11 Improved 705 with an 80,000-character core memory, 
higher speed, more parallel operation, and multiple 
input-output channels 'buffered in memory 

7070 Seria1 decimal computer, partly patterned after the 
650 but with major improvements; newer transistor 
and core memory technology place it in the 705 per- 
formance class a t  a lower cost5 

7090 Transistorized version of 709, about six times as fast 
7080 Transistorized version of 705 111, about six times as 

fast, with up to 160,000 characters of memory 
7030 Stretch computer described herein 

l W. Buchholz, The System Design of the IBM Type 701 Computer, Proc. IRE, 
vol. 41, no. 10, pp. 1262-1275, October, 1953. 

F. E. Hamilton and E. C. Kubie, The IBM Magnetic Drum Calculator Type 650, 
J. ACM, vol. 1, no. 1, pp. 13-20, January, 1954. 

C. J. Bashe, \V. Buchholz, and N. Rochester, The IBM Type 702, An Electronic 
Data Processing Machine for Business, J. ACM, vol. 1, no. 4, pp. 149-169, October, 
1954. 

J. L. Greenstadt, The IBM 'i09 Computer, "Proceedings of the Sympoiaum: New 
Computers, a Report from the Manufacturers," published by the ACM, March, 1957, 
pp. 92-96. 

6 5.  Svigals, IBM 7070 Data Processing System, Proc. Western Joint Computer 
Conf., March, 1959, pp. 222-231. 



A.2 Instruction Formats 

VFL arithmetic, 
radix conversion 

VFL  connective 

Transmission 

Store instruction 
counter i f  branch 

Branch on bit 

F loating-point 
arithmetic 

Uncond. branch, 
miscel faneous 

Direct index 

Immediate index 

Count and branch 

Branch on 
indicator 

Index word 

I 
Address 10001 I I P I ~eng th  ~BS I  Offset IS 

I 
O 18 24 28 32 35 41 44 51 60 63 

Decimai 
I 

Address 
I 

O 18 24 i8 32 35 41 44 51 55 60 63 

Length 

1 
Channel address 

I 

1000 

, I  
Op. 10000 

I 

I 
Address 000 

I 

BS 

I 1000 

5 18 24 28 32 5 1 60 63 
Forward Transmit 

Backward 1 (1 Swap 

O 18 24 28 32 5 1 63 

I 
Branch address I 

I 
I 

Address 
I 

Address 

Branch i f  1 :: 1 

Offset Conn I 

I 
Address 

I 

Branch Op., etc. 

O 19 28 31 

I 

Op. ,00000 

I 
I 

Address 
I 

l 
Address 

I 

I 
Address 

I 
o l9 25 ( ~ e a v h  indicator 

P 

1 

I FDT I 
Address 

I B ~ S ? O ~  I I 

O 19 23 2 8 3 1  

- 1 Set indicator to zero 

I 

Address 
I 

O 18 24 28 32 51 55 60 63 
Direct 

Immediate 1 'Ount 

J 

O 19 23 2831 

J 

I 

Op. l 

l 

IO000 Op. 
I 

I 1 
Value iF 

I I 

O 18 '25 28 46 63 

Count Refill 



A.3 Lisi of Registers and Spocial Addresses 

Zero 
Interval timer 
Time clock 
Interrupt address register 
Upper houndary regist,er 
Lower boundary register 

Notes 

3.57 1 
4.0 i 64 
5.12 1 

6 .  O 19 

l t0 
31.0 I 61 l ,l5 

Index register 15 

Xotes: Al1 unused bits in addresses 0.0 to 15.63 are permanently set to O. 
p Permancntly protected area of inemory 
a Read-only, except for STORE VALUE, STORE COUNT, STORE REFILL, and STORE 

ADDRESS. 

b Read-only. Address 1.28 means hit position 28 in word l .  
c In multiple-CPU systems, used to turn on CPU signal indicator in another CPU. 
d In  FLP operations only, the explicit operand address 8.0 is interpreted to mean 

the 64 bits 8.0 to 8.59 and 10.04 to 10.07, which combine to make up a proper 
single-length signed FLP number corresponding to the high-order part of tlie 
accumulator. In al1 other operations, a 64-bit operand at address 8.0 includes 
bits 8.0 to 8.63. 

e Bits 11.0 to 11.19 are read-only. 
f The rest of 12.0 are permanently set, read-only mask bits, 12.0 to 12.19 being 1s 

and 12.48 to 12.63 being 0s. 
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BC 1 Boiindary-contro1 hit I p 

7.17 
7.44 
8 .  O 
9 .0  

7 
7 

64 
64 

b 
C 

d 

e 
f 

Maintenance bits ff 1 Channel address register 
CPU Otlier CPU 

10.0 / 8 
11.0 i 64 
12.20 / 28 
13.0 1 64 
14.0 1 64 
15.0 64 
16.0 1 64 

t0 

LZC 

AOC 

L 

R 

Left-zeros count 
All-ones count 
Left half of accumulator 
Right half of accumulator 

se Aceumulator sign byte 
IND ' Indicator register 

l MASK Mask register 
RM Remainder register 
FT 1 Factor register 
TR 1 Transit register 
SO Index registcr O 



A.4 Summary of Operations and Modifien 

The mnemonic abbreviation is given in parentheses after the name. 

Arithmetical Operations 

a. Operations Auailabie in Both Variable-jield-Eength and Floating-
point Modes 
LOAD (L) 

The accumulator contents are replaced by the memory operand, 
except for data flag bits. 

LOAD WITH FLAG (LWF) 

Same as LOAD, except that the data flag bits are included. 
STORE (ST) 

The memory operand is replaced by the accumulator operand, 
including the data flag bits. 

STORE ROCXDED (SRD) 

The operand is rounded before storing, but the accumulator is not 
changed. 

ADD (+) 
The memory operand is added algebraically to the accumulator 
operand, the sum replacing the accumulator contents. 

ADD 	TO MAGNITUDE (+MG) 

The memory operand is added algebraically to the magnitude of the 
accumulator operand, except that the accumulator is set to zero if 
the result attempts to change sign. The accumulator sign is ignored. 

ADD T 0  MEMORY ( M + )  

The accumulator operand is added algebraically to the memory 
operand, the sum replacing the memory contents. 

ADD MAGNITUDE TO MEMORY (M+MG) 

The magnitude of the accumulator operand is added algebraically 
to the memory opernnd, except that the memory operand is set to 
zero if the result attempts to change sign. 

COMPARE (K) 

The accumulat.or operand is compared with the memory operand by 
algebraic subtraction; comparison indicators are set according to the 
result, but neither operand is changed. 
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COMPARE FIELD (KF) (VFL mode) 
COMPARE MAGNITUDE (KMG) (FLP mode) 

Same as COMPARE, except that the accumulator sign is ignored, and 
(in VFL) only a portion of the accumulator, equal in length to the 
memory, is compared. 

COMPARE FOR RANGE (KR) 
Vsed fo!lowing COMPARE to detvmine whether tEe sccullzulator 
operand falls below (accumulator low),wit hin (equal),or above (high) 
the range defined by the memory operands of the two instructions. 

COMPARE FIELD FOR RANGE (KFR) (VFL mode) 
COMPARE MAGNITUDE FOR RAXGE (KMGR)(FLP mode) 

Analogous to COMPARE FOR RANGE. 
MULTIPLY (*) 

The product of the memory and accumulator operands replaces the 
accumulator operand (see note). 

LOAD FACTOR (LFT) 
The memory operand is placed in the factor register, usually in 
preparation for MULTIPLY AND ADD. 

MULTIPLY AND ADD (*+) 
The product of the memory and factor-register operands is added 
algebraically to the accumulator operand (see note). 

DIVIDE (/) 
The accumulator operand (dividend) is divided by the memory 
operand (divisor), with the quotient replacing the accumulator 
operand and (in t,he VFL mode only) the remainder going to the 
remainder register (see note). (To obtain a remainder in floating- 
point division, use DIVIDE DOUBLE;see below.) 

Note: In the decima1 VFL mode, the operations MULTIPLY, MULTIPLY AND ADD, 
and DIVIDE are not executed directly, but operate like LOAD TRANSIT AND SET (see 
below) for execution by subroutine. 

b. Operations Avaiiable in  Variable-field-length illode Onl y 

ADD 	O N E  T 0  MEMORY (M+ 1) 
+l or -1 is added algebraically to the memory operand, ignoring 
the accumulator. 

COMPARE IF EQUAL (KE) 
COMPARE FIELD IF EQUAL (KFE) 

Same as COMPARE or COMPARE FIELD, respectively, except that the 
operation is performed only if the accumulator egual indicator is 
already on. I t  is used for multiple-field comparison. 

LOAD TRANSIT AND SET (LTRS) 
The memory operand is loaded into the transit register, and the offset 
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field of the instruction is loaded into the all-ones counter for ready 
use as a pseudo operation code in interpretive fashion. 

C. Operations Available in Floating-point :Mode Only 

RECIPROCAL DIVIDE (R/) 
Same as DIVIDE, except that the operands are interchanged, the 
memory operand being the dividend and the accumulator operand 
the divisor. 

STORE ROOT (SRT) 
The square root of the accumulator operand is stored in memory. 

LOAD DOUBLE (DL) 
LOAD DOUBLE WITH FLAG (DLWF) 

These are double-length operations similar to the single-length LOAD 

and LOAD WITH FLAG, except that an extra 48 bits to the right of the 
fraction being loaded are set to zero, whereas the single-length opera- 
tions leave these bits unchanged. 

ADD DOUBLE (D+) 

ADD DOGBLE TO MAGNITUDE (D+MG) 

MULTIPLY DOUBLE (D*) 


Similar to ADD, ADD TO MAGNITGDE, and MULTIPLY, respectively, 
except that the fraction part of the accumulator operand is of double 
length (96 bits). ( I o t e  that floating-point MULTIPLY ASD ADD is 
also a double-length operation.) 

DIVIDE DOUBLE (D/) 
Similar to DIVIDE, except that a 96-bit dividend is used and a 
remainder is produced and placed in the remainder register. Quo-
tient and remainder are both of single length. 

STORE LOW ORDER (SLO) 
The low-order part of the double-length accumulator operand is 
stored in memory with the proper exponent. 

ADD 	T 0  FRACTION (F+) 
Same as ADD DOUBLE, except that the exponent of the accumulator 
operand is used as the exponent of both operands during addition. 

SHIFT FRACTIOS (SHF) 
The double-length fraction in the accumulator is shifted left or right 
by the amount specified in the address; the accumulator exponent is 
unchanged. 

ADD 	T 0  EXPOXEXT (E+) 
The exponent of the memory operand is added algebraically to the 
accumulator exponent . 

ADD IMMEDIATE T 0  EXPOPLEST (E+I) 
The address part of the instruction, interpreted as an exponent, is 
added algebraically to the accumulator exponent. 



d. VFL-arithmetic iVodiJiers and Addressing Modes 

Radix modifier ( D ,  decimal; B, binary) 
l : Arithmetic and data format are decin~al. 
O: Arithmetic and data format are binary. 

Unsigned modifier (v) 
l : Thc memory operand has no sign byte, and tEe operand is cori- 

sidered positive. 
O: The memory operand has a sign byte. 

Negatwe sign modifier ( N )  

l : The sign of the unreplaced operand is inverted. 
O: The sign is used unchanged. 

Immediate acidressing (I) 
The address part after indexing serves as the memory operand. This 
mode precludes progressive indexing. 

Progressive indexing 
The specified index value is used as the address of the memory 
operand of the VFL operation; this is followed by one of six immedi- 
ate index-arithmetic operations (which see), as specified by a second- 
ary operation code: 

v + 1  v - I  
v + I C  v - I C  

V + ICR V - ICR 

Norrnalixation modifier (N, normalized; v, unnormalized) 
1 : The result is left unnormalized. 
O : The result is normalized automatically. 

Absolute value modifier (A) 

l : The sign of the memory operand is ignored, and tlhe operand is 
considered positive. 

O: The sign of the memory operand is used. 
Note: This modifier is analogous to the VFL unsigned modifier. 

Negative sign modifier (N) 
Same as in VFL arithmetic. 

Radix Conversion 

a. Operations 

LOAD CONVERTED (LCV) 

The radix of the memory operand, considered as an integer, is con- 
verted and the result placed in the accumulator. 



LOAD TRANSIT CONVERTED (LTRCV) 

Same as LOAD CONVERTED, except that the result is placed in the 
transit register. 

CONVERT (CV) 

The accumulator operand, considered as an integer, is converted and 
the result returned to the accumulator. The binary operand cor- 
responds in length and position to a single-length floating-point 
fraction. 

CONVERT DOUBLE (DCV) 

Same as CONVERT, except that the binary operand corresponds to a 
double-length fraction. 

b. Modifiers and Addressing Modes 

Same as in VFL arithmetic, except for 

Radix modifier (D, decimal; B, binary) 

Specifies the radix of the unconverted operand. 
1: Conversion is from decimal to binary. 
O: Conversion is from binary to decimal. 

Connective Operations 

a. Operations 

CONNECT (C) 

The memory operand is combined logically with the accumulator, 
according to the specified connective. The result replaces the 
accumulator operand. A left-zeros count and an all-ones count 
of the result are developed. 

CONNECT T 0  MEMORY (CM) 

Same as COKSECT except that the result replaces the memory 
operand. 

CONNECT FOR TEST (CT) 

Same as COXNECT except that the result is discarded after testing and 
both operands remain unchanged. 

b. Connective Code 

A 4-bit code xoo xoi xlo xll defines one of the sixteen connectives by 
listing the 4 result bits for each of the four states of a memory bit (m) 



and the corresponding accumulator bit (a): 

Operand bits i 
m Resuli bii, i 


c. Addressing Modes 

Immediate  addressing 
Progressive indexing 

Same as in VFL arithmetic. 

Note:  Immediate index arithmetic, mhere the address serves as the 
(unsigned) operand, is distinguished from direct index arithmetic, where 
the (signed) operand is a t  the addressed location, by the operation code 
rather than by a modifier. Separate positive and negative immediate 
operations on the signed value field are provided because the operand is 
unsigned. 

LOAD INDEX (LX) 
The specified fu11 word replaces the entire contents of the specified 
index register. 

LOAD VALUE (LV) 

LOAD VALUE IMMEDIATE (LVI) 

LOAD VALUE NEGATIVE IMMEDIATE (LVNI) 


The specified operand and sign replace the value field of the specified 
index register. 

LOAD COUKT (IMMEDIATE)(LC or LCI) 
LOAD REFILL (IMMEDIATE)(LR or LRI) 


Replace the count or refill field, respectively. 

STORE INDEX (SX) 

The entire contents of the index register are stored a t  the specified 
location. 

STORE VALUE (SV) 

STORE COUNT (SC) 
STORE REFILL (SR) 

The value, count, or refill field, respectively, of the index register is 
stored in corresponding fields of the index word a t  t8he specified 
location. 
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ADD (IMMEDIATE) TO VALVE (V+ or V + I) 
SUBTRACT IMMEDIATE FROM VALVE (V - I) 

The specified operand is added to or subtracted from the value field. 
ADD (IMMEDIATE) TO VALVE AKD COUXT (V + C or V + IC) 

SUBTRACT IMMEDIATE FROM VALUE AKD COUST (V - IC) 

Same as above, and the count is reduced by l. 
ADD (IMMEDIATE) TO VALUE, COUNT, AND REFILL (V + CR or V + ICR) 

SUBTRACT IMMEDIATE FROM VALVE, COUXT, AXD REFILL (V - ICR) 

Same as above and, if the count reaches zero, the word specified 
by the refill address replaces the contents of the index register. 

ADD IMMEDIATE T 0  COUXT (C + I) 
SUBTRACT IMMEDIATE FROM COUNT (C - I) 

The address part is added to or subtracted from the count field. 
COMPARE VALUE [(NEGATIVE) IMMEDIATE] (KV Or KVI Or KVSI) 

The specified operand and sign are compared algebraically with the 
value field, and the index-comparison indicators are set. 

COMPARE COUST (IMMEDIATE) (KC or KCI) 

The magnitude of the specified operand is compared with the count 
field, and tlhe index-comparison indicators are set. 

LOAD VALUE W I T H  SVM (LVS) 

The value fields of al1 index registers, corresponding to 1 bits in the 
instruction address part, are added algebraically, the sum replacing 
the value field of a specified index register. 

LOAD VALVE EFFECTIVE (LVE) 

The effective address is used to fetch, eventually, a non-LVEinstruc-
tion whose effective address replaces the value field of the specified 
index register. 

STORE VALUE IPU' ADDRESS (SVA) 

The value field of the index register is stored in the address part of 
the instruction a t  the specified location. 

REXAME (RNX) 

The contents of the specified index register are first stored a t  the 
address contained in the refill field of index register xO; the effective 
address of the RXX instruction is then loaded into the xO refill field, 
and the specified index register is refilled from that address. 

Branching Operations 

a. Unconditional Branching 

BRAKCH (B) 

The effective address of this instruction replaces the instruction- 
counter contents. 



BRANCH RELATIVE (BR) 

The effective address is added to the instruction-counter contents. 
BRANCH ENABLED (BE) 

Branch after enabling the interrupt mechanism. 
BRANCH DISABLED (BD) 

Branch after disabling the interrupt mechanism. 
BRANCH ENABLED AND WAIT (BEW) 

Same as BRANCH ENABLED, but no further instructions are executed 
unti1 an interrupt occurs. 

NO OPERATION (NOP) 

Same as BRANCH to next instruction in sequence, regardless of the 
address part. 

b. Indicator Branching 

BRANCH ON INDICATOR (BIND) 

Branch if specified indicator condition is satisfied. 
On-O$ modifier 

1: Branch if indicat,or is on (1). 
O: Branch if indicator is o$ (O). 

Zero modifier 
l :Set indicator to O after testing. 
O: Leave indicator unchanged. 

C. Index Branching 

COUNT AND BRANCH (CB) 

Reduce the count field of the specified index register by 1,and branch 
depending on whether the count has gone to zero or not; also incre- 
ment the value field as specified. 

COUNT, BRAXCH, AND REFILL (CBR) 

Same as COUNT AND BRAXCH, but also refi11 the index register if the 
count has gone to zero. 

On-O$ modifier 
l :Branch if count has gone to zero. 
O: Branch if count has not gone to zero. 

Advance modifiers 
00: Leave value field unchanged. 
01 :Add 45 to value. 

l0:Add 1 to value. 

l l : Subtract 1 from value. 

d. Storing Instruction Counter 

STORE INSTRUCTION COUNTER IF  (SIC) 

If prefixed to any of the preceding branch instructions, store the 
instruc tion-counter contents at  the specified location if the branch is 
successful. 



e. Bit Branching 

BRANCH ON BIT (BB) 

Branch if the specified test bit meets the specified condition. 
On-O$ modifier 

1:Branch if test bit is on (1 ). 
O: Branch if test bit is o$ (O). 

Zero modifier 
1: Set test bit to O after testing. 
O: Leave test bit unchanged. 

Invert modifier 
1 : Invert test bit, after application of zero modifiec. 
O: Leave test bit unchanged. 

Data-transmission Operations 

TRANSMIT (T) 

The contents of a first memory area are sent to and replace the con- 
tents of a second memory area. 

SWAP (SWAP) 

The contents of a first memory area are interchanged with the con- 
tents of a second memory area. 

Immediate count modifier ( I )  

l : The number of words to be transmitted are specified in the 
instruction. 

O: The number of words to be transmitted are specified in the count 
field of an index register. 

Backward modifier ( B )  

l : Addresses are decreased by 1 for each word transmitted. 
O: Addresses are increased by 1 for each word transmitted. 

Input-Output Operations 

WRITE (W) 

Data are transmitted from memory to an input-output unit. 
READ (RD) 

Data are transmitted from an input-output unit to memory. 
CONTROL (CTL) 

Contro1 information is sent from memory to an input-output 
unit. 

LOCATE (LOC) 

A selection address is sent to an input-output unit. 
RELEASE (REL) 

Any operation in progress for the specified channel is terminated 
immediately and status indications are reset. 



Suppress  end of operation modifier (SEOP) 

Norma1 end-of-operation interrupt is suppressed after completion 
of any of the above five operations. 

COPY CONTROL WORD (CCW) 

The current contro1 word for the specified channel is sent to memory. 

REFILL (R) 

The index word a t  the specified memory address is replaced by the 
word located a t  the address contained in its refi11 field. 

REFILL OPI' COCXT ZERO (RCZ) 

A REFILL operation is performed only if the count field of the ad- 
dressed index word is zero. 

EXECUTE (EX) 

At the specified address there is an operand which is executed as an 
instruction. 

EXECUTE IXDIRECT AXD COUXT (EXIC) 

At the specified address there is another address which is treated as 
a pseudo instruction counter: its operand is executed as an instruc- 
tion, and the pseudo instruction counter is then advanced to the 
next instruction location. 

STORE ZERO (z) 
Store an all-zero word a t  the specified full-word location. 



A.5 Surnrnary of Indicators 

The indicator number is shown to the left of the name and the mne- 
monic abbreviation to the right in parentheses. The notation in brackets 
gives the class of indicator : 

1 Interrupt mask bit always 1;always interrupts 
m Interrupt mask bit set by programming 
O Interrupt mask bit always 0; never interrupts 
P Permanent indicator; remains on until reset by interrupt or by 

programming 
T Temporary indicator; corresponds to most recent result which 

affects it 

Equipment Check 

0. Machine check (MK) 

A general error has been detected by the CPU checking circuits. 
1. 	Instruction checlc (IK) W'] 

An error has been detected during the performance of the current 
instruction. 

2. 	 Instruction reject (IJ) [LP1 
The current instruction cannot be executed. 

3. 	Exchange contro1 check ( E K )  [l$'] 
A general error has been detected by the exchange checking circuits. 

Attention Request 

4. 	T ime  signal (TS) [l$] 
The interval timer has gone to zero. 

5 .  	CPU signal (CPUS) IlJ'I 
A signal has been received from another, directly connected CPU. 

Input-Output Reject 

6.  	Exchange check reject ( E K J )  W ]  
An error was detected by the exchange while it mas setting up the 
current input-output instruction. 

287 



7. 	Uni t  not ready reject ( U N R J )  [l,pl 
The unit selected by the current input-output instruction was not 
ready to operate. 

8. 	Channel busy reject (CBJ) [U'l 
The channel selected by the current input-output instruction has not 
completed a previous instruction. 

Input-Output Status 

(Indicators 9 to 13 are used in conjunction with the channel address 
register, which contains thc address of the input-output channel involved.) 
9. 	Exchange program check (EPGK) W ]  

The exchange hns terminated a previously initiated input-output 
operation because of a programming error. 

10. 	Uni t  checlc (UK) [l,pl 
An error or malfunction has been detected by checking circuits a t  
the unit or the channel. 

11. End  exception (EE) [l,pl 
The last operati011 for the channel encountered an exceptional 
condition. 

12. End  of operation (EOP) [l,pl 
The last operation for the channel was ended as specified by the 
instruction and its contro1 words. 

13. 	Channel signal (cs) [v'] 
An attleiition-request signal has been received from the channel. 

14. Reserved for future expansion. 

Instruction Exception 

15. Operation code inoalid (OP) 
An instruction was suppressed because t'he operation code or the 
modifiers were not valid. 

16. 	Address invalid (AD) [l,pl 
An instruction was suppressed because the effective address was not 
valid. 

17. 	Unended sequence of addresses (USA) W ]  
A one-instruction addressing or execute loop has been forcibly ter- 
minat'ed after 1 millisecond (severa1 hundred cycles). 

18. Execute exception (EXE) [LP] 
An execute operation was suppressed because it attempted to change 
the instruction counter. 

19. 	Data store (DS) [l,pl 
An attempt to change the contents of a protected storage location, 
while the interrupt system was enabled, was suppressed. 



20. 	Data fetch (DF) [m,pl 
An attempt to fetch data from a protected storage location, while 
the interrupt system was enabled, is indicated, and, if the corre-
sponding mask bit was l ,  the data fetch was suppressed. 

21. 	 Instruction fetch (W) [m7Pl 
An attempt to branch to an instruction a t  a protected location, 
while the interrupt system was enabled, is indicated, and, if the 
corresponding mask bit was l ,  the operation was suppressed. 

Result Exception 

22. Lost carry (LC) 

A carry has been lost a t  the high end of the result. 
23. Partiai fieid (PF) 

An operation failed to use al1 of the significant operand bits. 
24. Zero divisor (ZD) 

A divide operation with a zero divisor was suppressed. 

h P I  

b7p1 

h p ]  

Result Exception, Floating Point O n l y  

Imaginary root ( I R )  [m,PI 
The operand of a STORE ROOT operation was negative. 
Lost significance (LS) b7P1 
An adding or shifting operation produced a result with a zero fraction 
and no overflow. 
Preparatory shift greater than  48 (PSH) b7pl 
One operand in a FLP addition was shifted right, relative to the other 
operand, by more than 48 bits. 
Exponent  JLag positive (XPFP) [m,P] 
The result of a FLP operation had a positive exponent with an 
exponent flag of 1 propagated from an operand with an exponent 
flag of 1. 
Exponent overjiow (XPO) [m,Pl 
The positive result exponent has gone into the range E >= +21°, 
generating an exponent flag of 1. 
Exponent  range high (XPH) [m,Pl 
The result exponent was in the range +21° > E 2 +Z9. 
Exponent range tow (XPL) [m,Pl 
The result exponent was in the range +Z9 > E 2_ +P. 
Ezponent  underjlow ( x p u )  b 7 P 1  
The negative result exponent has gone into the range E 5 -21°, 
generating an exponent flag of 1. 
Zero muit iply  (ZM) [%TI 
The result of a normalized FLP mult iply  operation was an order-of- 



magnitude zero, with a zero fraction and no generated or prop-
agated exponent underflow. 

34. 	Remainder underjlow (RU) b b p ]  
The remainder after DIVIDE DOGBLE had a negative exponent 
E 5 -21° and a generated exponent flag of 1. 

F!agging 

35. 	Data Jlag T (TF) 
36. 	Data JEag U (UF) 
37. 	Data jlag V (VF) 

Data flag T ,  U ,  or V of the current operand was on. 
38. 	Index jlag (XF) 

The index flag of the index word just modified was on. 

Transit Operation 

39. 	Binary transit (BTR) [m?'] 
A binary VFL LOAD TRANSIT IXD SET instruction was executed. 

40. 	Decima1 transit (DTR) [m,PI 
A decima1 VFL LOAD TRANSIT AND SET, MULTIPLY, ANDMULTIPLY 

ADD, or DIVIDE instruction was executed. 

41 to 47. 	Program indicator zero to six (PGO to P G ~ )  
These indicators are set by programming only. 

Index Result 

48. 	Index count zero (xcz) [O,Tl 
The count field resulting from an index-word modification mas zero. 

49. 	Index value less than xero ( x v ~ z )  
50. 	Index value zero (xvz) [O,Tl 
51. 	Index value greater than zero ( x v ~ z )  [o,T] 

The value field resulting from an index-word modification was less 
than zero, zero, or greater t'han zero, respectively. 

52. Index low (XL) [O,Tf 
53. Index equal (XE) [O,Tl 
54. Index high (XH) [O71 

An index compare operation showed the compared field in the speci- 
fied index register to be lower than, equal to, or higher than the 
corresponding field a t  the effective address. 

Arithmetic Result 

53. 	To-memory operation (MOP) 
The operat,io,tionjust executed was of the store type. 



56. 	Result less than zero (RLZ)  [o,T] 
The result of a data-arithmetic or radix-conversion operation was 
nonzero and negative. 

57. 	Result zero (RZ) [O,Tl 
The result of a data-arithmetic, radix-conversion, or connective 
operation was zero. 

58. 	Result greater than zero (RGZ) [O,Tl 
The result of a data-arithmetic, radix-conversion, or connective 
operation was nonzero and positive. 

59. 	Result negative (RN) [OA 
The result of a data-arithmetic or radix-conversion operation was 
negative, whether zero or not. 

60. 	Accumulator low (AL) [O,Tl 
61. 	Accumulator equa1 (AE) [O,Tl 
62. 	Accumulator high ( A H )  D J 1  

-4 data-arithmetic compare operation showed the accumulator 
operand to be respectively lower than, equal to, or higher than the 
operand a t  the effective address. 

Mode 

63. 	Noisy mode (NM) [o,pl 
When this indicator is on, al1 normalized FLP operations are per- 
formed in the noisy mode. (This indicator can be set only by 
programming.) 



Appendix B 

PROGRAMMING EXAMPLES 

This appendix contains some short examples of programs essentially 
in machine language. The purpose here is not to teach programming, for 
a machine of this magnitude will always be programmed in symbolic 
form, nor is it claimed that these programs represent the best or the 
fastest method of solving each problem on the 7030. The purpose is 
merely to illuminate severa1 features of the 7030 that are discussed in 
various chapters. 

Notation 

The following notat'ion will be used in the examples. The notation is 
incomplete and does not cover some ~perat~ions not used in the examples. 

Al1 integers are written in decimal form unless prefixed by a different 
radix in parentheses: 

Floating-point Numbers 

An FLP number is written as a (signed) decimal fraction, followed by 
the letter E and a (signed) decimal integer representing the pomer of 2;
+ signs may be omitted : 

0.5 E O (?h1 
0.8 E -4  (0.05) 

-0.75 E 12 (-3,072) 

The term XFNZERO denotes an injnitesimal (zero fraction, zero expo- 
nent, exponent sign negative, and exponent flag l), which behaves 
arithmet,ically like a true zero. An alternative notation is 0.0 E -1024. 

Addresses 

Addresses are written as two decimal integers separated by a period. 
Thus 1257.48 is the address of bit 48 in word 1257 of memory. (These 
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are not mixed decima1 fractions.) Interna1 registers are referred to by 
the addresses listed in Appendix A.3. Index registers are referred to as 
xO to x15 in the index addresses and as 16.0 to 31 .O in the operand address. 

Short arithmetical expressions are to be evaluated with carries past 
the period being modulo 64: 

Half-length Instruction Format 

o Operation 
M Mode symbols (M is replaced by one or more of the symbols listed 

below or omitted if there are none) 

J J-index address (omitted in instructions that have none) 

A Address 

I I-index address (omitted if no address modification) 


List of Mode Symbols: 

FN FLP normalized 
FU FLP unnormalized 

F branch if indicator o$ (omitted for "branch if indicator on") 
z set indicator to O after test 
+ 	add 1.0 to value 
H add 0.32 (half) to value for index branching only 
- subtract 1.0 from value 

VFL Instruction Formats 

o Operation 

M Mode symbols (M is replaced by symbols listed below) 

L Field length (1 to 64) 


BS Byte size (1 to 8) 
A Address 
E' Offset (O to 127, may be omitted if O )  
I 	 I-index addresses (there may be one for modifying the address and 

another for modifying the offset; either is omitted if not needed) 



List of Mode Symbols: 

V B  binary signed 
VD decimal signed 

VBU binary unsigned (the only one which applies to connectives) 
VDU decimal unsigned 

Operation Codes and Suffixes 

For greater clarity the operatlion codes are spelled out in the examples, 
although mnemonic symbols would ordinarily be used. 

Operation modifiers are partly included in the mode symbols (above) 
and partly shown as suffixes to the operations. The suffixes may be one 
or more of the following: 

NEGATIVE 

ABSOLUTE 

IMMEDIATE 

COUXT 

REFILL 

Progressive indexing is shown by the addition of an immediate index- 
ing code in parentheses after the operation: 

(V + 1) add immediate t'o value 
(V - 1) subtract immediate from value 
(v + IC), (V - IC) (same) and count 
(V + ICR), (V - ICR) (same), count, and refi11 

The connective-operation codes are followed by a 4-bit code to specify 
the connective (see Chap. 7) ; for example, C O ~ E C Twith the and con- 
nective is written 

COKNECT 0001 

Indicator branching operations will be written BRASCH ISD 11-here IND 

is replaced by the appropriate indicator abbreviation as listed in Appendix 
A.5. Thus BRASCH xcz means branch on indcx count zero. 

Data Formats 

To distinguish program constant's, et'c., from instructions, one of 
these prefixes is used: 
INDEX index word consisting of value, count, reJill separated by commas 
VALUE signed index value 

DATA any other data, such as a FLP number 



B.1 Polynomial Evaluation (Table B.1) 

The polynomial 
m 

is best evaluated by the expression 

using repeated floating-point rnultiplication and addition. 
This example illustrates the universal-accurnulator concept applied to 

floating-point arithmetic wit,h simple indexing. 

~ o c a t i o n  S t a t e r n e n t  N o t e s1 1 

LOAD INDEX, ~ 1 ,200.0 
LOAD (FN), 301.0 (xl) 
MULTIPLY (FX), 201.o 
ADD (FN), 300.0 ( x l )  
COUNT AND BRAKCH (-), ~ 1 ,101.0 
STORE (FC), 202.0 
BRANCH ENABLED ARD WAIT, 103.0 

ISDEX, M.O - 1.0, M, 200.0 
DATA, X 

DATA, P 

DATA, AO 
DATA, A l  

DATA, A 2  

. . . . . . . . 

N o t e s :  ( 1 )  Set up index register 1. 
(2) Load accumulator with initial a, = al+,-i. 
(3 )  Multiply accumulator contents (ak)  by x. 
(4 )  Add ak- l .  

(5) Traverse loop m times, each time reducing index value by 1.0. 
(6) Store result. 
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B.P Cube-root Extraction (Table B.2) 

The cube root .=m 

may be found by means of the recursion formula 

Let N be a normalized FLP number with exponent P and fraction F. 
A suitable choice of a starting value xowill give a high accuracy in very 
few iterat,ions. For example, a value of xo with exponent 

P 
p = T rounded to nearest integer in the positive direction 

3 

and fraction 
fo = 0.7109375 = 0.101 101 1 (binary) 

will give fu11 48-bit accuracy for any N in three iterations ( I c  = 3), 
except for a possible rounding error in the last iteration. This value of 
p is the fina1 exponent of the (normalized) result, and the fo value is 
selected to give about equa1 iteration errors a t  the ext4reme values of 
the fina1 fraction. 

A starting value with a fixed fraction was chosen for simplicity in the 
programming example. By a more elaborate formula1 it is possible to 
choose a closer value of xo that will yield the desired accuracy by only one 
or two applications of the recursion formula. Such a program would be 
longer and somewhat faster. 

This program shows an effettive comhination of VFL and FLP 
arithmetic. 

l E. G. Kogbet,liantz, "Computation of Sin N, Cos N and .;"fNUsing an Aut,omatic 
Computer," IBM J. Research and Developmeni!, vol. 3, no. 2, pp. 147-152, April, 1959. 
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L o c a t i o n  	 N o t e s  

LOAD INDEX, ~ 1 ,  	 Start200.0 
LOAD (FU), 204.0 
ADD IMMEDIATE T0 EXPOSEXT (FU), -1 (1)  
ADD (FS), 204.0 
STORE (FU), 203.0 (2) 

LOAD (VB, 12, l ) ,  204.0, 117 (3 )  

ADD IMMEDIATE (VBV, 1, 8 ) ,  1, 117 (4) 

DIVIDE IMMEDIATE (VBU, 2 , 8 ) ,  (2) 11, 116 (5 )  

STORE ROUNDED (VB, 12, l ) ,  8.0, 117 (6)  

ADD T0  FRACTION (FU), 202.0 (7) 

STORE (FU), 205.0 (8) 


MULTIPLY (FN), 205.0 

MCLTIPLY ( m ) ,  205.0 

ADD IMMEDIATE T0 EXPONEXT (FU), 1 (9) 

ADD (FN), 204.0 

RECIPROCAL DIVIDE (FN), 203.0 ( 1 0 )  

ADD (FN), 201.0 ( 1 1 )  

MULTIPLY (FN), 205.0 

STORE (FU), 205.0 ( 1 2 )  

COUNT AND BRANCH, x1, 107.32 ( 1 3 )  

BRANCH ENABLED AND WAIT, 112.0 Stop 


IXDEX, 0.0, 3, 200.0 
DATA, 0.5 E O 
DATA, 0.7109375 E O 
DATA 

DATA, N 

DATA, X 

N o t e s :  ( 1 )  Form N/2 by subtracting 1 from exponent. 
(2 )  	 Place 3K/2 in temporary storage. 
(3 )  	 Treating exponent of N as a signed VFL number P, load magnitude into 

accumulator exponent position and exponent sign into sign register. 
(4 )  	 Form P + 1 (to bias subsequent rounding operation in positive direc- 

tion). 
(5 )  	 Divide by 3 (binary 1 1 ) .  Offset is chosen to give signed quotient with 

one binary place to right of point for rounding. (Rest of accumulator, 
corresponding to FLP fraction magnitude, is cleared.) 

(6) 	Form FLP number 0.0 E p, where p = (P f 1 ) / 3  rounded to integer 
( = P/3rounded with positive bias). Rounded, signed result is returned 
to accumulator exponent position (exponent sign replaces extra quotient 
bit). Fraction sign is immaterial. 

( 7 )  	Form xo = f o  E p. 
(8) Store xoas first trial root. 
(9) Form 2xk3. 

( 1 0 )  Form ( 3 N / 2 )  / (2xk3 + N). 
( l  l )  Add *.S. 
( 1 2 )  Store x ~ + I .  
(13 )  Traverse loop three times. 
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B.3 Matrix Multiplication (Table 0.3) 
An m-by-n matrix A and an n-by-p matrix B are multiplied to produce 

an m-by-p matrix C. Each element of A is a single FLP number, the 
elements being stored row by row a t  consecutive word locations starting 
with ,LO. Similarly, matrixes B and C are stored row by row starting a t  
B.O and c.0, respectively. This program, which is essentially the matrix 
rnultiplication example of Table 11.5, illustrates indexing procedures. 

L o c a t i o n  Statement 

LOAD INDEX, ~ 1 ,201.0 
LOAD INDEX, X2, 202.0 
LOAD INDEX, x3, 203.0 
LOAD INDEX, x4, 17.0 
LOAD INDEX, x5, 18.0 
LOAD DOWLE (FU), 204.0 

LOAD FACTOR (FN), 0.0 ( ~ 4 )  
MULTIPLY AND ADD (FN), 0.0 ( ~ 5 )  
ADD IMMEDIATE T0  VALUE, ~ 5 ,P 

COUNT BRANCH AND REFILL (+),~4,103.0 

STORE ROTJNDED (FN), 0.0 ( ~ 3 )  
ADD IMMEDIATE T0 VALUE, ~ 3 ,1.0 
COUNT BRANCH AND REFILL (+),~2,102.0 

ADD IMMEDIATE T0 VALUE, ~ 1 ,N 

COUNT BRABCH AND REFILL, x3, 101.32 
BRANCH ENABLED AND WAIT, 107.32 

INDEX, A.O, N, 17.0 
INDEX, B.O, P, 202.0 
INDEX, c.0, M, 203.0 
DATA, XFNZERO 

X o t e s :  (1)  Load index register xl ( io )  from ioo, x2 ( jo )  from j 0 0 ,  and x3 (k)from ko. 
(2)  	 Load x4 (i)  from xl (io) and x5 ( j )  from x2 (jo) .  
(3) 	Clear double-length accumulator before starting cumulative multi-

plication. 
(4) Accumulate product element in accumulator. 
(5) Increment j by p to advance to next column element of B. 
(6) 	Increment i by l to advance to  next row element of A.  Traverse inner 

loop n times. At the end, reset i to i o  to restart same row of A. 
(7) 	Store product element. 
(8) Increment FG by 1to advance to next product element. 
(9) 	Increment j o  by 1 t,o start next cslumn of B. Traverse middle loop p 

times. At the end, reset j o  to j o o  to return to beginning of B. 
(10)  Increment io by n to start next row of A. 
(11) Traverse outer loop m times. 
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B.4 Conversion of Decima1 Numbea to a Normal-F l ~ a t i n ~ - ~ o i n t  
ized Vector (Table B.4) 

A group of 25 decimal fixed-point numbers is to be converted to a 
normalized vector of 25 binary FLP numbers. The decimal numbers are 
positive, unsigned, and ten digits long. The decimal digits are expressed 
in a 6-bit code whose low-order 4 bits are the corresponding binary inte- 
gers; thus the field length is 60 and the byte size 6. The decimal num- 
bers are stored consecutively starting a t  address D. The vector is to be 
"normalized" by replacing each number F k  by the expression 

(The meaning of the term normaiixation here differs from that used in 
describing FLP arithmetic.) The vector is to be stored in consecutive 
word locations starting at address F.O. 

This example shows the use of radix cpnversion and progressive index- 
ing combined with FLP operations. 



TABLEB.4. CONVERSIONOF DECIMALNUMBERSTO A FLP NORMALIZED VECTOR 

Location 	 Statement 

LOAD INDEX, ~ 1 ,201.0 

LOAD INDEX, ~ 2 ,  202.0 

LOAD (FU), 203.0 


STORE (FU), 204.0 
LOAD CONVERTED (V + I) (VDU, 60, 6), 0.60 (xl),  68 
STORE (FU), F.0 ( ~ 2 )  
MULTIPLY (FN), 8.0 
ADD (FN), 204.0 
COUNT BRANCH A N D  REFILL (+),x2, 101.32 
STORE ROOT (FN), 204.0 

LOAD (FN), F.O ( ~ 2 )  
DIVIDE (FN), 204.0 
STORE (FU), F.0 ( ~ 2 )  
COUNT AND BRANCH (+), x2, 105.32 
BRANCH ENABLED AND WAIT, 107.32 

INDEX, D, 0, 201.0 

INDEX, 0.0, 25, 202.0 

DATA, SFPYZERO 


DATA 

Notes: (1) Current ZFk2 to temporary storage. 
(2) 	Convert decima1 integer to binary and place in FLP fraction position 

of accumulator, the exponent being zero. Progressive indexing is used 
to increment the index value by 0.60 after the present operand field is 
fetched. 

(3) Store Fk temporarily in unnormalized form. (The exponent need not 
be adjusted to correspond to the actual decimal-point position of the 
original field, for the subsequent normalization process cancels out the 
exponent discrepancy.) 

(4) Square Fk. 
(5) Place ( Z F ~ ~ ) ~ '  in temporary storage. 
(6) Replace each Fk by normalized value. 



B.5 Editing a Typed Message (Table B.5) 

One of the chief uses for the logical-connective operations is in editing 
input and output data. Editing may cover a variety of different opera- 
tions, and only a few of these will be illustrated in this skeletonized but 
useful example. I t  includes the various connective operations, the left- 
zeros count applied to indexing, zero tests, and a byte-size adjustment. 

A message, which has been entered on a typewriter like the one on the 
7030 console, is edited to delete control characters which appear in the 
coded message whenever a contlrol key (such as carriage return) is struck. 
Deletion here means removing the control character and closing the gap 
(not just replacing the character with a blank). The number of control 
characters is not known in advance, and the length of the edited message 
must be determined by looking for an END code. The input message is 
stored in memory starting a t  address 300.0, and the block of edited output 
data is to be stored a t  address 400.0. For subsequent input-output 
operations it is necessary to fill any unused portion of the last word of the 
block with O bits. A control word for use with read-write instructions, 
containing in the count field the number of words in the output block, is 
to be made up and stored a t  201.0. 

In the 8-bit code used with the typewriter, al1 control bytes (other than 
blank) are distinguished from data by a l bit in the high-order position. 
The program shown tests this bit in eight characters a t  a time. The 
left-zeros count is used to locate the control byte (or the leftmost control 
byte if there are severa1 among the eight). The control byte is then 
tested for the END code, which is 11 l1 1110. Advantage is taken of the 
coincidence that the complement of this code is a single 1 bit, which, by a 
suitable offset, serves as the mask to isolate the high-order bit in the 
previous test for al1 control chmacters. (Such a short cut is not neces- 
sarily sound programming, but it offers here an additional opportunity 
to demonstrate the flexibility of the VFL system in genera1 and of the 
connective operations in particular.) 



L o c a t i o n  

LOAD INDEX, ~ 1 ,  0.0 
LOAD INDEX, ~ 2 ,  0.0 
CONNECT IMMEDIATE 001 1 (vsu, 9, l ) ,  (2)  1 1111 1111, 63 

CONNECT 0011 ( v s u ,  64, 8 ) ,  300.0 ( x l )  
CONNECT TO MEMORY 0101 (VBU, 64, 8),  400.0 ( x 2 )  
CONNECT FOR TEST 0001 ( v s u ,  64, 8 ) ,  8.0 
ADD TO VALUE, xl, 7.17 
ADD TO VALUE, x2, 7.17 
BRANCH RZ, 102.0 
CONNECT FOR TEST 1001 (vsu, 8, 8), 30050 ( x l ) ,  71 
ADD T0 VALUE, ~ 1 ,  200.0 
BRANCH RZ (F), 102.0 

CONNECT TO MEMORY 0000 ( v s u ,  56, 8 ) ,  400.0 ( x 2 )  
ADD TO VALUE, x2, 200.32 
LOAD INDEX, ~ 3 ,  201.0 
LOAD COUNT, ~ 3 ,  18.0 
STORE INDEX, ~ 3 ,  201.0 
BRANCH XCZ, 112.32 
BRANCH ENABLED AND WAIT, 112.0 
BRANCH ENABLED AND WAIT, 112.32 

VALUE, 0.08 
VALUE, 0.56 
INDEX, 400.0, 0, 201.0 

N o t e s  

ATotes: ( l )  The operand, specified by immediate addressing, is the 9-bit field 
l 11 11 l1 1 l. Specifying a byte size of 1 causes each l to be expanded 
to an S b i t  byte 0000 0001. The fu11 operand, therefore, consists 
of nine such bytes. The connective 0011 and the offset of 63 then 
cause the left half accumulator to be filled with the pattern i 000 0000 
1000 0000 . . . . (The fina1 I, n-hich spills into the right half, is not 
used.) 

(2 )  64 bits (eight bytes) of input data are placed into the right half accumu- 
lator. 

(3 )  These 64 bits are tentatively stored in the output area. 
(4 )  The data field is anded with the test pattern in the left half accumulator. 

The left-zeros count register contains either 64 or the position of the 
first "control byte" with a high-order l bit. 

(5 )  The left-zeros count is added to both the input and output indexes. 
(6) Branch if the r e s u l t  z e r o  indicator is o n ,  i.e., if there is no control byte. 
( 7 )  A 0000 0001 byte from the test pattern is matched against the control 

bgte; if the control byte is an END code, al1 result bits are 0. 
( 8 )  In any case, skip the control byte in the input data by adding 0.08 to 

the index value. 
( 9 )  Branch to the beginning of the loop if the r e s u l t  z e r o  indicator is 08 after 



the last test (not END), thus starting with the 64 bits following the con- 
trol byte, which may include severa1 bytes transferred previously but 
which now must be offset by one byte. (Multiple control bytes in a 
64bit field will be taken care of one a t  a time.) 

(10) Enough 0s are inserted to a 1  the last word of the block. 
(11) The output index value is rounded up to the next full-word address. 
(12) The index value from x2 is transferred to the count field of the control 

word being made up in x3, dropping the bit-address portion and leaving 
only the number of fu11 words in the block. 

(13) Test for a zero index count, which could result from an END code in the 
F s t  data byte and be interpreted as a word count of 2l8 a t  the output. 

Transposition of a Large Bit Matrix (Table 8.6) 

Location Statement Notes 

LOAD INDEX, ~ 1 ,201.0 

LOAD INDEX, ~ 2 ,  202.0 

LOAD INDEX, x3, 203.0 


CONNECT 0011 (V + I) (VBU, 1, l ) ,  N.0 ( ~ l ) ,  63 ( ~ 3 )  
SUBTRACT IMMEDIATE FROM VALUE COUNT AND REFILL, x3,0.32 
BRANCH xcz (F), 101.32 
STORE (V + IC) (VBU, 64, 8), 1.0 (x2) 
BRANCH xcz (F), 101.32 

LOAD COUNT IMMEDIATE, ~ 2 ,  N 


ADD TO VALUE AND COUNT,x1, 204.0 

BRANCH xcz (F), 101.32 

BRAKCH ENABLED AND WAIT, 106.32 


INDEX, A.O, 6 4 * ~ ,  201.0 

INDEX, B.0, N, 202.0 

INDEX, 0.0, 64, 203.0 

VALUE, - ~ * ~ * 6 4 . 0  + 0.01 


Notes: ( l )  Assemble 64 successive column bits in the right half accumulator by 
indexing the offset from 63 to O. 

(2) 0.32 means a 1 in the low-order bit of the 19-bit address in this instruc- 
tion, which matches the low-order position of the offset field; thus the 
effective offset will be reduced by 1. 

(3) Branch if the index count is not zero. 
(4) Store 64 row bits of the transposed matrix. 
(5) Traverse the loop n times. 
(6) Reset x2 count to n. 
(7) Advance the column index to the start of the next column by subtracting 

the length of the column (64n2 words) and adding 0.01. 



In a computer with efficient bit-handling facilities, bit matrixes can be 
useful tools. For instance, computing time and storage space for sparse 
matrixes can be saved by storing only the nonzero elements in consecutive 
locations and using bit matrixes to indicate the position of successive zero 
and nonzero elements in the complete matrix. The present example of 
transposing such a bit matrix illustrates the use of bit address and offset 
indexing with VFL operations (see Table B.6). 

A square 64n-by-64n bit matrix beginning at address A.O is to be trans- 
posed and stored at  nonoverlapping addresses starting at  B.O. The 
technique chosen here is to assemble 64 successive bits of a column into 
a 64-bit word in the accumulator and then store that word in a row of the 
transposed matrix. 

A more efficient, but longer, program can be written by making use of 
the bit-interleaving ability of the connective operations. The core of 
such a program is the transposition of a small 8-by-8 matrix within the 
accumulator ; this is done in eight steps, 8 bits at a time (see Table B.7). 
By dividing t'he larger matrix into a group of 8-by-8 subrnatrixes, each 
submatrix may be transposed separately and stored at  the mirror-image 
position with respect to the main diagonal of the fu11 matrix. The fu11 
program, not shown here, would be almost four times as fast as that of 
Table B.6. 

Location Statement Nolesl 
LOAD INDEX, ~ 1 ,  Start2 0 1 . 0  
LOAD INDEX, X2, 2 0 2 . 0  
STORE ZERO, 9 . 0  (1) 
CONNECT 0 1 1 1  (V + I) (VBU, 8, l ) ,  0 . 0 8  ( X l ) ,  7 (X2)  (2) 
SUBTRACT IMMEDIATE FROM VALUE AND C O ~ T ,~ 2 ~ 0 . 3 2  
BRANCH xcz (F), 1 0 1 . 3 2  
STORE (VBU, 64, 8), A.O (3) 
BRANCH ENABLED AND WAIT, 1 0 4 . 3 2  Stop 

INDEX, A.O, 0, 2 0 1 . 0  

INDEX, 0 . 0 ,  8 ,  202.0 


Notes: ( 1 )  Clear right half accumulator. 
( 2 )  Or 8 bits from A.O into the accumulator, 8 bits apart. 
(3) Store transposed matrix back into A.O. 
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Equipment count, 7, 216-225 
Error from malfunction, 194, 252 
Error analysis, 100 
Error correction, automatic, 2, 3, 216 

on disks, 20 
for input-output, 66, 203 
in look-ahead, 2Q7, 243 
in memory, 17 

Error detection (see Checking) 
Error recording, 216 
Escape character, 63 
Even parity, 66, 90 
Exception fixup, 8, 138-146, 183 
Exception monitoring, by interrupt sys- 

tem, 137, 195 
in set-up mode, 259, 264 

Exchange, 3, 203-205, 248-253 
&ed-program computer, 15, 250 
input-output channels, 19,20, 179, 180, 

193 
peak traffic, 185, 235-237, 251 

Exchange memory, 249, 250 
Exclusive or function, 27, 88 
Execute operations, 134, 146-149, 286 
Existence in memory, 262 
Exponent, FLP, 25, 94, 95, 104, 105 

arithmetic, 118, 208, 216 
(See also FLP data format) 

Exponent flag (tag), 25, 98, 107-109 
Exponent flag negative (see Infinitesimal) 
Exponent flag positive, 289 

(See also Infinity) 
Exponent overflow, 98-1 l 3  
Exponent range indicators, 112, 1l 3  
Exponent underflow, 98-1 l 3  1 
Extended character set, 60, 78 
External storage (tapes or disks), 19, 29, 

179, 248 
transmission rate, 48, 49 

External units (see External storage; 
Tnput-output units) 

Extraction, data field, 37 
(See also Logica1 operations) 

Facility, multiprogrammable, 192, 193 
Factor register, 23, 86, 276 
Fast memory (see Memory) 
Fault location, 2 

(See also Malfunction) 
Fetching, 180 

(See also Data fetch; Instruction fetch) 
Field, 39, 40, 257 

packing and e~tract~ing, 37 

partial, 84-, 112, 117-119, 289 


Field address, 76 
Field comparison, 86, 116, 278 
Field length, 39, 77, 78 

in connective operations, 89, 90 
&ed, 36, 37, 47 
indexing of, 127 
(See also Variable field length) 

File, 39, 40, 175, 260 
File maintenance, 175-17'7, 256, 265- 

267 
File processing (see Data processing) 
Fingers, counting on, 42 
Fixed field length, 36, 37, 47 
Fixed-point arithmetic, data format, 34, 

80-83 
problems with, 92-94 
by unnormalized FLP, 103, 115-119 
by VFL, 75 

Fixup, exception, 8, 138-146, 183 
Flag (see Chain flag; Data flag; Exponent 

flag; Index flag) 
Flag indicators, 290 
Flip-flop, 223 
Floating-point (FLP) arithmetic, 94-104 

division, special rules, 117, 118 
fractional, 1l 4  
noisy mode, 25, 102, 113, 114 
normalized, 25, 97, 103 

modifier, 106, 280 
shifting, 95, 100, 105 
on singularities, 108-1 19 
unnormalized, 97, 103 

addition overflow, 115 
as fined-point arithmetic, 103, 115- 

119 
to indicate significance, 100-103 
for multiple precision, 119 

(See also Multiple-precision arithrnetic ; 
Precision;Range;Rounding; 
Scaling) 

Flow (see Data flow; Instruction flow) 
FLP arithmetic unit, 208-218 
FLP data format, 25-34, 104-108 

conversi011 to and from, 87 
notation, 292, 293 

FLP indicators, 112, 113 
FLP instruction format, 106, 126-128, 

275 
FLP number, 94-105 

singularity, 96-99, 108-1 19 
(See also FLP data format) 

FLP operations, 24,25, 114-118,277-280 
modifiess, 106, 280 

Forced input-output termination, 253 
Forced interrupt, 148 
Forced zero, 86 
Forgie, J. W,, 201 



Format (see Data format; Instruction 
format) 

FORTRAN programming language, 95n. 
Forwarding in look-ahead, 240, 241 
Four-address instruction, 123 
Fraction, compared to integer, 47, 81, 82, 

1 l 4  
FLP, 25, 94, 95, 104-108 

arithmetic on, 118, 208, 216 
(See also FLP data format) 

Freeman, H., 200n. 
Freiman, C. V., 211n. 
Frequency count, 257 
From bit, 240 
Full-word address, 35, 129 
Full-word instruction (see Instruction 

length) 

GAMMA 60, Bull, l ln.,  40, 201 
Gap, interblock, 182 
Gate (see And circuit ; Or circuit) 
General-purpose computer, 5, 6, 59 
Generality, applications, 4, 6, 59 

features, 9 
input-output, 179, 188-190 

Generated overflom-, 11 2 
Generated underflow, 112 
Gill, S., 134n., 201 
Goldstine, H. H., 43n. 
Greenstadt, J. L., 274 
Group of records, 163, 164, 174-177 

Half-word address, 35, 129 
Half-word instruction (see Instruction 

length) 
Halt (see Stop) 
Hamilton, F. E., 274 
Herwitz, P. S., 254 
Hierarchy, data, 39, 40 

memory, 229 
Housecleaning mode, look-ahead, 246, 

247 
Housekeeping, built into 7951, 265 

and look-ahead design, 229, 230 
reduced, by indexing, 151, 160, 178 

by universal accumulator, 79 
Human intervention (see Operator inter- 

vention) 

I address, 126-130, 157 
IBM CPC (Card Programmed Calcu- 

lator), 94 
IBM SORC (Xaval Ordnance Reskarch 

Calculator), 94 

IBM SSEC (Selective Sequence Elec- 
tronic Calculator), 192 

IBM 24, 26 keypunch, 63n., 68 
IBM 604, 37 
IBM 650, 1, 10, 274 

instruction in accumulator, 147 
two-address instructions, 123 

IBM 701, 1, 192, 274 
instruction format, 124 

IBM 702, 1, 189n., 274 
IBM 704, 1, 10, 274 

arithmetic, 81, 94, 119-121 
circuit speed, 7 
indexing, 154 
instruction format, 124, 131 
program print-out, 57 

IBM 705, 1, 274 
arithmetic, 81 
input-output system, 189n. 
program print-out, 57 
variable field length, 38, 77 

IBM 709, 10, 274 
contro1 word, 164, 166 
indexing, 154 
indirect addressing, 167 
instruction sequencing, 134n., 147 
(See aiso IBM 704) 

IBM 727 tape unit, 20 
IBM 1401, 38, 63n. 
IBM 7030, 17, 274 

Project Stretch computer, 4, 5 
IBM 7070, 164, 274 
IBM 7080, 274 

(See also IBM 705) 
IBM 7090, 274 

(See also IBM 704; IBM 709) 
IBM 7950 system, 258 
IBM 7951, 257-271 

relation to Project Stretch, x 
Identifier field, record, 40, 163 
Identity function, 88 
Immediate address, 30, 153, 241 

example, 297-304 
in input-output instructions, 183, 184 
in VFL instructions, 77, 280 

Immediate index arithmetic, 129, 282, 
283 

(See also Index arithmetic) 
Implication function, 88 
Implied address, 79, 125, 156-159 
Increment, index, 153-159 

combined with count, 28, 159, l60 
and refill, 28, 166 

in 7951, 260, 261 
Index address, 21, 124-130, 155-157 

restricted, 128, 135 
truncated, 156 



Index arithmetic, 27, 153 
operations, 27, 28, 282, 283 

instruction format, 156, 157, 275 
(See also Address modification) 

Index arithmetic unit, 21, 207 
Index branching, 136, 161, 275, 284 
Index comparison, 159 
Index counting (see Count) 
Index fiag, i64, 290 

(See aiso Chain flag) 
Index incrementing (see Increment) 
Index memory, 19, 206, 207 
Index registers, 27, 28, 126, 276 

number of, 14, 27, 28, 156 
stored in index memory, 19, 207 
(See also Address modification; Index 

address; Index arithmetic) 
Index result indicators, 290 
Index value, 27, 28, 151-165 

(See also Data word address) 
Index word, 19, 28, 155-166 

format, 127-129, 275 
(See also Contro1 word) 

Indexing, of bit address, 30, 77, 162 
initialization, 154, 165 
by instruction counter, 135, 284 
multiple, 9, 155 
progressive (see Progressive indexing) 
termination, 153-160 
(Swn1s0 Address modification) 

Indexing leve1 in 7951, 260, 261 
Indexing pattern in 7951, 256-264 
Indicator, 10, 28, 287-291 

accumulator equal, 291 
accumulator high, 291 
accumulator Eow, 291 
address invalid, 288 
binary transit, 85, 290 
channel busy reject, 288 
channel signal, 185-191, 252, 288 
CPU signal, 287 
data fetch, 289 
data jlag T, U , or V, 290 
data store, 288 
decima1 transit, 85, 290 
end of operation, 288 
end exception, 288 
exchange che& reject, 287 
exchange contro1 checlc, 287 
exchange program check, 288 
execute exception, 148, 288 
exponent jlag positive, 289 
exponent overjlow, 289 
exponent range high, 289 
exponent range low, 289 
exponent underjlow, 289 
imaginary root, 111-1 13, 289 

Indicator, index count nero, 290 
index equal, 290 
index jlag, 290 
index high, 290 
index low, 290 
index value greater than zero, 290 
index value Eess than zero, 290 
index value zero, 290 
instruction check, 287 
instruction fetch, 289 
instruction reject, 287 
lost carry, 84, 85, 112, 115, 289 
lost signi$cance, 113, 289 
machine check, 287 
noisy mode, 113, 291 
operation code invalid, 288 
partial Jivld, 84, 112, 117-119, 289 
preparatory shift greater than 48, 113, 

289 
program indicator zero to six, 290 
remainder under$ow, 113, 290 
result greater than zero, 291 
result less than zero, 291 
result negative, 291 
result zero, 90, 291 
tinze signal, 200, 287 
to-menzory operation, 85, 112, 290 
unended sequence of addresses, 288 
unit check, 288 
wnit nol wndy reject, 288 
zero divisor, 85, 110-1 12, 289 
zero multiply, 11 1-1 13, 289 

Indicator register, 21, 28, 276 
Indicators, branching on, 28, 136, 284 

data flag, 112, 290 
FLP, 112, 113 
held in look-ahead, 239 
for interrupt, 137-139, 195, 196 
testing of, 10, 28, 131 
VFL, 84, 85 

Indirect address, 30 
formation in 7951, 267 

Indirect addressing, 27, 153, 204 
and address modification, 167, 168 
in input-output instructions, 184 
by separate instruction, 9, 131, 167 
similar to execute, 146 
(See also Operation, LOAD VALUE 

EFFECTIVE) 
Indirect indexing, 167 
Inequality (see Comparison; Exclusive or 

function; Matching) 
Infinitesimal, 96-98, 108-1 13, 292-300 
Infinity, 96-98, 108-1 l 3  
Information, absence of, 66 

measure of, 8, 36, 45 
Information-channel capacity, 49 



Information content, instructions, 9, 
128-131 

numbers, 45-49 
Information retrieval, 254-256 
Initial program loading, 186n. 
Initialization, indexing, 154, 165 

7951 set-up, 265 
Inner product, 101, 116 
Tnput by key-recording, 68, 69 
Input-output, 179-191 

reject indicators, 185, 287, 288 
status indicators, 288 

Input-output channels, 19, 20, 179-193 
number of, 249 
(See also Channel address; Channel 

signal) 
Input-output data, 39, 40, 175, 260 
Input-output interrupts, 137 
Input-output operations, 29, 180, 181, 

285, 286 
control, 252 
control words, 29, 181-184, 250-253 
end, 185, 186, 252, 253 
example, 172-177 
forced termination, 253 
instruction format, 126, 127, 181, 

275 
in multiprogramming, 199 
secondary addresses, 184, 190, 253 

Input-output units, 179, 180 
allocation, 194, 198 
buffering, 186-188, 248 
concurrent operation, 11-14 
control codes, 63, 72, 183 
on exchange, 20, 203-205, 248 
interface connection, 188-190 
speed, 180, 235-237 

Tnsertion, record, 163, 173-177, 266 
Institute for Advanced Study (Prince- 

ton), 43 
Instruction, as data, 150, 229, 230 

frequency, 130 
information content, 9, 128-131 
neighbors executed concurrently, 11 
notation, 8n., 292-294 

Instruction counter, 21, 134, 135, 207 
held in look-ahead, 239 
in relative branching, 135, 136, 284 
storing, 28, 134, 135, 275, 284 

after interrupt, 139-145 
by separate instruction, 9, 131 

Instruction counter bit, 240 
Instruction decoding, 128-13 1 
Instruction exception indicators, 288, 

289 
Instruction fetch, 17, 22, 207 

indicator, 289 

Instruction flow, CPU, 206, 207 
concurrency, ll 
delayed by branch, 236 
interlocks (see Interlocks) 
smoothing of, 229 
(See also Instruction counter) 

Instruction format, 125-127, 275 
early computers, 122-124 
FLP, 106, 126-128 
input-output, 126, 127, 181 
interpretation of, 56 
for 7951, 265 
VFL, 77, 126, 127 

Instruction length, 21, 126-131 
for branching, 135, 136 

Instruction memory, separate, 233-238 
Instruction modification, 150 

problem with look-ahead, 229, 230 
(See also Address modification; Modi- 

fier) 
Instruction prefix, 131, 135, 167 
Instruction sequencing (see Branching; 

Execute operations; Instruction 
counter; Instruction flow ;Interrupt) 

Instruction set, 24-29, 277-286 
complete, 131 
simplest possible, 131, 151 
symmetrical, 121 
systematic, 9, 10, 130 
(See also Operation) 

Instruction stream (see Instruction ffow) 
Instruction unit, 17-21, 206, 207 

buffering action, 207, 229 
component count, 217 
speed, 234 

Instruction-unit counter, 240 
Integer, compared to fraction, 46-48, 81, 

82 
notation, 292 

Integer arithmetic (see VFL operations) 
Interblock (interrecord) gap, 182 
Interchange (see Swapping) 
Interface, 188-190 
Interference between programs, 194 
Interlaced (interleaved) addresses, 18, 

202, 238 
Interleaving of bits, 91, 303, 304 
Interlocks, instruction, 22, 204-207 

look-ahead counters, 240-243 
need for, 11, 12, 229, 230 

Internal operand bit, 240 
Internal registers, 30 

(See also Machine registers) 
International Business Machines (IBM), 

1 
(See also specific IBM machines) 

Interpretive console, 14, 190, 196 



Interpretive programming, 87, 147, 195 
Interrupt, 133, 134 

disabling and enabling, 139-145, 195, 
196, 252 

during multiprogramming, 199, 200 
forced, 148 
from input-output, 184-186, 252 
interlocks needed, 11, 12, 229, 230 
!o&-ahead recovery, 16, 230, 246, 247 
masking, 138-146, 195, 196 
multiple levels, 145, 146 
simultaneous, 139-145 
supervisory control, 198-200 
suppression, end-of-operation, 185, 286 

Interrupt address register, 21, 138-146, 
276 

Interrupt system, 21, 30, 31, 136-146 
for multiprogramming, 13, 195-200 
(See also Indicators) 

Interrupt table, 138, 139, 196 
Interval timer, 31, 135, 276 

in multiprogramming, 194-197 
Inversion, bit, 27, 89 

branch-test bit, 136, 285 
Italicized digits, 68, 70 

J address, 126, 157 
Jumping (see Brancliing) 

Key field (identifier field), 40, 163 
Keyboard, 68, 69 
Keypunch, 63n., 68 
Kilburn, T., 150n. 
Kogbetliantz, E. G., 296n. 
Kolsky, H. G.,  228 
Kubie, E. C., 274 

Language (see Instruction set; Program- 
ming language) 

Leading zeros (see Floating-point arith- 
metic, unnormalized; Zero) 

Left-to-right data sequence, 76, 77 
Left-zeros count, 24, 90, 276 

use in division, 117-1 19 
Leftmost-one identifier, 138-140 
Leiner, A. L., 15n., 201 
LEM-l computer (U.S.S.R.), 134n., 147 
Length, in indexing, 153, 154 

(See also Field length) 
Letter (see Alphanumeric code; Char- 

acter) 
Level, indexing, in 7951, 260, 261 

indirect address, 167, 168 
interrupt, 145, 146 
look-ahead, 229-246 

Level checked bit, 239 
Level jìlled bit, 239 
Limit, 153, 154 
Lines, input-output, 190 

phone, 63, 179-190 
Loading of accumulator, 84-90, 115, 116 
Loading effettive address (see Indirect 

address) 
Lscating operation, 184 
Location (see Address) 
Logarithm, 96 
Logic unit, 209 
Logical connectives, 87-89 
Logical operations, 44, 257 

data for, 34, 35, 52, 55 
symbols for, 62 
(See also Connective operations) 

Look-ahead, 11, 21, 22, 228-230 
buffering action, 229 
recoveri after interrupt, 16, 230, 246, 

247 
Look-ahead address register, 240, 241 
Look-ahead level, 229-246 
Look-ahead operation code bit, 240 
Look-ahead unit, 205-208, 228-247 

checking, 207, 240-246 
component count, 217 
simulation, 218, 230-238 

Look-up (see Table look-up) 
Loop (see Program loops) 
Los Alamos Scientific Laboratory, 2, 4, 

231 
joint planning group, x 

Lower boundary register, 31, 276 
Lower-case letter, 62-69 
Lowry, E. S., 192 
Lozenge, 66, 73 

McDonough, E., 192 
Machine language (see Instruction set) 
Machine malfunction, 194, 252 
Machine time accounting, 194 
Blachmudov, U. A., 134n. 
Macroinstructions, 119, 264, 265 
Magnetic cores, 1 

(See also Memory) 
Magnetic disks (see Disks) 
Magnetic tape, 43, 179-187 

automatic zero deletion, 37 
block length, 182 
code convention, 71 
control of, 183-189 
data flow rate, 48, 76 
high-speed, 258 
as storage, 19, 179 
tape control unit, 189, 249 



Magnetic tape, tape unit selection, 184 
Magnetic wire, 43 
Main memory (see Memory) 
Maintenance bits, 276 
Maintenance controls, 191, 227 
Malfunction, 194, 252 
Man-machine relation, 12, 13 

(See also Operator intervention) 
Manchester computer, 150n. 
MANAC I1 (Los Alamos), 105 
Uantissa, 95n. 

(See also Fraction) 
Manual contro1 (see Maintenance con- 

trols; Operator intervention) 
Mapping, 256 
Marimont, R. B., 201 
Marker bits, 38 
Mask register, 21, 138-146, 276 
Masking, of indicators, 138-146, 195, 196 

to select bits, 39, 89 
Master file, 175-177, 266 
Match function, 88 
Match unit, 263, 264 
Matching, bit, 27, 88, 264 

record (see Record handling) 
Mathematical symbols, 62 
Matrix, 53 

bit, transposition of, 303, 304 
Matrix multiplication, 170, 171, 298 
Matrix operations, 260, 261 
Memory, 3, 17-19, 202 

auxiliary fast units, 3n., 229 
as instruction memories, 233-238 
in 7951, 258 

buffering in, 187, 188, 248 
delay-line, 43 
effect on performance, 48, 49, 233-238 
exchange, 249, 250 
existence (oring) feature, 262, 267 
multiple units, 12, 15, 233-238 
nondestructive reading, 207 
virtual (see Look-ahead) 

Memory addressing (see Address number- 
ing; Word length) 

Memory area, 29, 163, 181-183 
Memory bus unit, 15, 17, 205, 206 
Memory conflicts, 232-235 
Memory cycle, 7, 202, 233 
Memory hierarchy, 229 
Memory protection, by address monitor- 

ing, 8, 31, 196, 197 
boundaries defined, 21, 31 276 
multiprogramming requirements, 13 

199 
for input-output, 183 

Memory sharing, 193 
Memory speed, 7, 202, 233-238 

Memory word, 7, 17, 39, 40 
Merging, 163, 256, 265-267 
Mersel, J., 134n. 
Meteorology, 254 
Metropolis, N., 100n. 
Microprogramming, 132 
Minus sign, 70 
Mnemonic abbreviations, 276-291 
Mode, immediate addressing, 280 

progressive indexing, 77, 280 
Modification (see Address modification; 

Instruction modification) 
Modifier, 10, 130 

absolute vnlue, 106, 280 
advance, 284, 295-300 
backward, 285 
branch operations, 28, 136, 284, 285 
data transmission, 285 
FLP, 106, 280 
immediate count, 285 
input-output, 286 
invert, 285 
negative sign, 84, 106, 280 
normalization, 106, 280 
on-o$, 284, 285 
radix, 80, 280, 281 
suppress end of operation, 185, 286 
unsigned, 83, 280 
VFL, 80-84, 280, 281 
zero, 284, 285 

Modifier notation, 293, 294 
Monitoring (see Exception monitoring; 

Memory protection; Program 
monitoring) 

Multiaperture core memory, 207 
Multiple-address instruction, 122-125 
Multiple-block operation, 183, 252 
Multiple computing units, 15, 195, 287 
Multiple flag, 183, 252 
Multiple indexing, 9, 155 
Multiple-precision arithmetic, 93, 10'7, 

119-121 
double-length numbers for, 25, 101 
rare in fixed point, 77, 82 
requires unnormalized FLP, 103 

Multiplexing in exchange, 249-251 
(See also Concurrent operation) 

Multiplication, 22-26, 44, 50 
cumulative (see Cumulative multi- 

plication) 
decimal, by subroutine, 26, 208 
FLP, 95, 109-116 
high-speed unit, 208-21 1 
logical, 27, 35, 88, 89 
speed, 15, 218 
VFL, 26, 86, 208 
zero problem in FLP, 110-113 



Multiprogramming, 192-201 

need for interrupt, 138, 146, 195, 


196 

operating techniques, 10-14, 193- 


196 

program protection (see Memory pro- 


tection) 

reasons for, 10-14 

syxrvisor, 8, 194-200 


Murphy, R. W., 86n. 


Naming of index register, 28, 156 

Nand (not and), 88 

Nanosecond (ns), 7, 220 

Natura1 data units, 33-39, 75 


influente on instruction format, 127, 

128 


Naur, P., 62n. 

Naval Ordnance Research Calculator 


(NORC), 94 

Negation (see Inversion; Not function) 

Negative numbers, 82, 210-212 


(See aiso Sign) 

Neighbors in array, 152 

Nesting store, 125 

Newell, A., 164n. 

No operation bit, 240 

Noise, electrical, 225, 226 


numerical, 102 

Noisy mode, PLY,25, 102, 113, 114 

Nonarithmetical data processing (see 


Data processing) 

Nondestructive-read memory, 207 

Nonnegative numbers, 25, 26, 83, 86 

Nonnumerical data (see Alphanumeric 


data) 

Nonprint code, 67 

Nonrestoring division, 21 1-2 13 

Nonstop CPU operation, 135, I9G 

Nor function, 88 

Normalization, FLP (see Floating-point 


arithmetic) 

Normalized vector, 299, 300 

Not function, 35, 88 


symbol, 73, 88, 219 

Not and function, 88 

Note, W. A., 15n., 201 

NPN transistor, 218 

Null code, 67, 68 

Number base (see Radix) 

Number range, 92-94, 99 


(See also Scaling) 

Number systems, 42 

Numbers, coding, 43-51 


negative, 82, 210-212 

positive, arithmetic far, 83, 86 


Numbers, unsigned, 25, 26, 83 

(See also Alphanumeric data; Charac- 


ter code; Decima1 digits; FLP 

number) 


Numerical data (see Numbers) 

Numerical keyboard, 69 


Octal (base-8) code, 78 

Odd parity, 66, 90 

Off-line input-output operation, 13, 189 

Offset, 79, 90 


indexing of, 127, 303, 304 

Oh, distinction of letter, 70 

On-line input-output operation, 13, 189, 


193 

One, distinction of, 70 

One-address instruction, 122-125, 156, 


157 

Operand address, 21, 151, 155 


greater length, 124, 125 

in indirect addressing, 167 

in progressive indexing, 161 

(See also Data word address) 


Operand check counter, 240 

Operand registers (C, D), 22-24, 208-210 

Operand specification, 21 

Operating techniques, 10-14, 193-196 

Operation, 277-286 


ADD, 24, 85, 277, 295-300 

ADD DOUBLE, 120, 279 


TO MAGNITUDE,
279 

ADD TO EXPONENT,
118, 279 

ADD TO FRACTION,118, 279, 297 

ADD IMMEDIATE TO COUNT,283 

ADD IMMEDIATE TO EXPONENT,
118, 


279, 297 

ADD IMMEDIATE TO VALIJE,283, 298 


AND COUNT,283 

COUNT, AND REFILL, 283 


ADD MAGNITUDE TO MEMORY,
86, 277 

ADD TO MAGNITUDE,
25, 85, 86, 277 

ADD TO MEMORY, 84, 85, 277 

ADD ONE TO MEMORY,
85, 278 

ADD TO VALUE,157-159, 283, 302 


AND COUNT,159-161, 283, 303 

COUNT, AND REFILL, 166, 283 


BRANCH,
135, 283 

ON BIT, 28, 136, 285 

ON IXDICATOR, 28, 136, 284, 302-304 


BRANCH DISABLED,135-145, 199, 284 

BRANCH ENABLED, 135-145, 284 


AND WAIT, 135, 284, 295-304 

BRANCH RELATIVE,135, 136, 284 

BYTE-BY-BYTE,
263-265 

CLEAR MEMORY,
265 

COMPARE,
86, 277, 278 


IF EQUAL,86, 278 




Operation, COMPARE, FOR RANGE, 86, 278 
COMPARE COGNT, 283 

IMMEDIATE,283 

COXPARE FIELD, 86, 278 


IF EQUAL,86, 278 

FOR RANGE, 86, 278 


COMPARE MAGNITCDE,
116, 278 

FOR RANGE,116, 278 


COMPARE VALUE, 159, 283 

IMMEDIATE,
283 

NEGATIVE IMMEDIATE,
283 


CONNECT,
27, 89, 90, 281, 302-304 
TO MEMORY,27, 89-91, 281, 302 
FOR TEST, 27, 90, 281, 302 

CONTROL, 181-190, 252, 285 
CONVERT,87, 281 
COXVEBT DOUBLE, 87, 281 
COPY CONTROL WORD,253, 286 
COUNT AND BRANCH,136, 161, 162, 

284, 295-300 
COUKT, BRANCH, 136, 169, AND REFILL, 

170, 284, 298, 300 
DIVIDE, 10,24-26,86,87, 115, 278,279, 

297, 300 
DIVIDE DOUBLE,115-1 18, 279 
EXECUTE, 146-148, 286 

INDIRECT AND COUNT,148, 149, 286 
INDIRECT LOAD-STORE,267 
LOAD,24,84-90, 115, 120,277, 295-300 

WITH FLAG, 85, 115, 277 
LOAD CONVERTED,87, 280, 300 

LOAD COUNT,282 


IMMEDIATE,
282, 303 
LOAD DOUBLE,116, 120, 279, 298 

WITH FLAG, 116, 279 
LOAD FACTOR, 86, 115, 120, 278, 298 
LOAD INDEX, 282, 295-304 
LOAD REFILL, 282 

IMMEDIATE, 282 
LOAD TRANSIT CONVERTED,87, 281 
LOAD TRANSIT AND SET, 87, 278, 279 
LOAD VALUE,282 

EFFECTIVE,30, 167, 168, 283 
IMMEDIATE,282 
NEGATIVE IMMEDIATE, 282 
WITH SUM, 155, 283 

LOCATE,181-190, 252, 285 
MERGE, 266 
MCLTIPLY,24-26,86, 278,279, 295-300 

AKD ADD, 86, 115-120, 278, 279, 298 
MULTIPLY DOUBLE,120, 279 
NO OPERATION, 136, 284 
READ, 29, 175-177, 180-185, 250-252, 

285 
RECIPROCAL DIVIDE, 10, 116, 279, 297 
REFILL, 166, 175, 286 

ON COUNT ZERO, 286 

Operation, RELEASE, 253, 285 
RENAME,28, 156, 283 
SEARCH, 266 
SELECT, 266 
SEQUENTIAL TABLE LOOK-UP, 267-270 
SHIFT FRACTION,118, 279 
STORE, 24, 85, 120, 277, 295-304 
STORE COUNT, 282 
STORE INDEX, 282 
STORE INSTRUCTION COGXTER IF, 

135-145, 284 
STORE LOW ORDER, 116, 120, 279 
STORE REFILL, 282 
STORE ROOT, 116, 279, 300 
STORE ROUNDED,86, 115, 277, 297, 298 
STORE VALUE,282 

IN ADDRESS,8, 283 
STORE ZERO, 286, 304 
SUBTRACT IMMEDIATE FROM COCXT,283 
SUBTRACT IMMEDIATE FROM VALCE,283 

AND COUXT,283, 304 
COUNT,AKD REFILL, 283, 303 

SWAP, 28, 126, 145, 173, 285 
TAKE-INSERT-REPLACE,266 
TRASSMIT,28, 126, 285 
WRITE, 29, 175-177, 180-184, 250-252, 

285 
Operation code, 70, 126-130 

notation, 294 
Operation modifier (see Modifier) 
Operator error, 193, 194 
Operator intervention, 13, 186 

facilities for, 190, 196 
Optimization of design, 7, 8 
Or circuit, 89, 224 
Or function, 27, 88, 89 
Order-of-magnitude zero, 97, 98, 109-1 11 
Ordering, 163-165, 256, 265-267 
Oring in memory, 262, 267 
Other-CPU bits, 276 
Output (see Input-output) 
Overdraw in division, 213 
Overflow, 92, 97 

exponent, 98-1 l 3  
in unnormalized FLP arithmetic, 112, 

115 
in VFL arithmetic, 75, 81-85 

Overlap (see Concurrent operation) 

Packaging, circuit, 7, 223-225 
Packing, data field, 37 

decima1 digits, 66, 68 
Paper tape, deiete code, 67, 68 
Parallel arithmetic, 22, 208-218 
Parallel computers, 273 
Parameters set up in 7951, 265-267 



Parity, 90 
Parity bit, 66-72 
Parity check (see Checking) 
Partial field, 84, 112, 117-119, 289 
Partition symbols, 38 
Performance, arithmetic, 217, 218 

balanced, 121, 234 
comparison with IBM 704, 1, 2 
effect, of memory, 48, 49, 233-238 

of number base, 48-50 
objective, 2-6 
rough approximation, 32 
tape-limited, 48, 76 

Performance-to-cost ratio, 5, 6, 151 
Perlis, A. J., 62n. 
Phone line, 63, 179-190 
Pilot Computer (Xational Bureau of 

Standards), 15n. 
Pipeline effect, 188, 204 
Planning of Project Stretch, vii-xi, 4- 

16 
Plugboard, 150 

electronic analogy, 257, 264 
Plus sign, 70 
PNP transistor, 218 
Polynomial evaluation program, 295 
Pomerene, J. H., 254 
Positive-number arithmetic, 83, 86 
Positive numbers, 83, 86 

(See also Sign) 
Postshiit, 1 u O  
Power preferred to simplicity, 8, 9 
Power supply, 225-227 
Precision, 92-105 

VFL, 77, 82 
(See ~~so'~lulti~le-~recisionarithmetic) 

Prefix instruction, 131, 135, 167 
Preshift, 100 
Print editing, 56-58, 75, 267 
Printer, 67, 179, 189 

chain, 63, 186 
Priority, input-output, 235 

interrupt, 31, 139, 140 
memory bus, 205, 206 
in queue, 185, 198 

Procrustes, 38 
Product (see Multiplication) 
Program assembly, 14, 132, 267 

(See aZso Programming language) 
Program debugging, 8, 31, 56 

during multiprogramming, 13, 193 
Program indicators, 290 
Program initialization, 169, 170 
Program interruption (see Interrupt) 
Program loops, 128, 160, 170 

endless, 148, 194, 200 
examples, 149, 169-171, 295-304 

Program loops, fast memory for, 233 
(See also Index arithmetic; Indexing) 

Program monitoring, 147-149 
Program relocation, 8, 135, 198 
Program restart, 169, 170 
Program scheduling, 14, 194, 195 

(See also Priority) 
Program start and stop, 135, 186n., 196 
Prograni switch, 136 
Program tracing, 147-149 
Programming, compatibility, 7, 125 

ease of, 8, 151 
error in, 193, 194, 252, 253 
examples, 119-121, 295-304 

notation in, 292-294 
interpretive, 87, 147, 195 

Programming language, affects instruc- 
tion set, 132 

ALGOL, 62 
compiler for, 8, 198, 256 
macroinstructions, 119, 264, 265 
print-out,, 56 

Progressive indexing, 28, 127, 161, 162 
effect on look-ahead, 246 
example, 300-304 
instruction format, 77, 280 
notation, 294 

Project Stretch, viii-xi, 1-7 
Propagated overflow, 112 
Pseudo instruction counter for execute, 

148, 149 
Pseudo operations, 26 
Punched cards, bit transposition, 186 

card-to-tape conversion, 189 
8-bit code. 71. 72 
keypunch, 63n., 68 
output punch, 179, 186 
reader, 179-189 
12-bit code, 55, 64, 78 
(See also Plugboard) 

Punctuation symbols, 40, 62, 69 
Push-down accumulator, 126 

Queuing, 163, 185, 198, 199 
Quotient (see Division) 

Radix, address, 14, 52-58 
choice of, 42-59 

affects information content, 45-49 
in FLP, 104, 105 
mixed, 42n. 

Radix conversion, 16, 44, 208 
aflects format, 51, 87 
example, 299, 300 
operations, 27, 87, 280, 281 



Radix modifier, 26 
Radix-point alignment, 79-82, 92 
Range, number, 92-94? 99 

(See also Scaling) 
Range comparison, 86, 116, 278 
Read-only registers, 276 
Read-only storage, 147 
Reading, 29, 180-188 

in exchange, 251, 252 
Ready, 190 
Real-time response, 5, 193 
Recomplementing, 77n., 82n., 210 
Record, 39, 40 
Record handling, 162-165, 172-177, 

266 
Redundancy, instruction format, 130 
Redundancy bit (parity bit), 66-72 
Redundancy check (see Checking, parity) 
Refill, 165-171 

(See aEso Chaining) 
Refill address, 28, 155, 165, 166 

as branch address, 166 
for input-output, 29, 181, 182 

Register stages, 224 
Registers, 19-24, 204-210, 276 

storing on interrupt, 139 
(See also Accumulator sign byte 

register) 
Rejection of instructions, 185, 287, 288 
Relative address in array, 152, 153 
Relative branching, 135, 136, 284 
Relative error, 103 
Reliability, 2, 7 

(See also Checking) 
Remainder (see Division) 
Remainder register, 24, 86, 276 
Remington Rand (GNIVAC), 123, 134 
Renaming of index registers, 28, 156, 

283 
Reset and add, 84 
Resetting bits, 89 
Resolution (see Bit address; Scaling) 
Response, to external signals, 136, 137 

real-time, 5, 193 
Result, alignment, 81, 82 

indicators, 84, 112, 289-291 
(See also Indicator) 

Return address for operand fetch, 206 
Rewinding of tapes, 183, 186 
Ring of memory areas, 172-177 
Robertson, J. E., 216n. 
Rochester, S., 274 
Roman numerals, 267-270 
Root (see Cube-root program; Square 

root) 
Round-off error, 92, 99-101 

effect of radix, 50, 105 

Rounding, 100-103 
example, 296, 297 
operations, 86, 115, 277 

Samelson, K., 62n. 
Scale factor, 93, 94 
Scaling, 50, 54, 93-95 

avoided in division, l l 7  
rare in VFL, 82 

Scalzi, C. A., 192 
Scanning, file, 265-267 

as opposed to addressing, 37 
Scattered contro1 words, 173 
Scattered records, 164, 165 
Scheduling, 14, 194, 195 

(See also Priority) 
Schmitt, W. F., 201 
Scientific computers, 273 
Scientific computing, 6, 59, 254-256 
SEAC computer (Kational Bureau ol 

Standards), 123 
Searching (see Scanning) 
Selection address, 181-184 
Selectron memory tube, 43 
Sense, 184 
Sequence (see Comparing sequence; Data 

ordering; Data sequence; Seria1 
arithmetic) 

Seria1 arithmetic, 22-24, 75-77, 208, 209 
plan for separate unit, 3 

Seria1 computers, 273 
Seria1 input-output, 187 
Service programs, 56 
Service request, input-output, 249-251 
Set-up mode, 257-267 
Setting bits, 27, 89 
Shannon, C. E., 45n. 
Shaw, J. C-, 164n. 
Shift, case, 67-69 

code, 63-69 
Shifter, parallel, 210, 216, 224 
Shifting, 37 

in exchange, 249-252 
in FLP, 95, 100, 105 
to multiply or divide, 50 
replaced by offset, 70 

Sign, 33, 34, 47, 210 
in accumulator, 22, 83, 107 
in address, 129 
in index value, 27, 129, 155, 282 
separate byte, 70, 82, 83 

Signal button, 191 
Significance loss, 92, 99-105 

checking for, 99-103 
indicator, 113 
(See also Multiple-precision arithmetic) 



Significant bits, lost, in unnormalized 

FLP, 112, 115 


in VFL, 84, 85, 289 

Simon, H. A., 164n. 

Simulation, 218, 230-238 

Simultaneous operation (see Concurrent 


operation; Interrupt; Multiprogram- 

ming) 


Single-address instruction? 122-125, 156, 

157 


Single-block operation, 182, 183 

Single card, 217-225 

Single-length FLP number, 103-108 

Single-length operations, 104, 114-1 16 

Single precision (see Multiple-precision 


arithmetic) 

Singularities, FLP, 96-99, 108-1 19 

Sink unit, 259-267 

Skipping, of instructions, 133 


over zeros or ones, in division, 211-214 

in multiplication, 50 


Smith, J. L., 15n., 201 

Solid-state components, l 

Sorting, 39, 163, 256 


7951 facilities for, 265-267 

Source unit, 259-267 

Space, allocation of, 194, l98 


character, 62-68, 72 

Spacers for grouping data units, 36, 38 

Sparse matrix, 304 

Special aààresses, 276 

Special characters, 62-69, 264 

Special FLP operations, 119 

Special-purpose computer, 6, 59 


exchange as, 15, 250 

Speed, circuit, 7, 220 


memory, 7, 202, 233-238 

(See also Performance) 


Square root, 111-119 

instruction, 116, 279 


Standard character code, ix 

Start, computer, 135, 186n. 


input-output, 184-191 

Starting address in 7951, 260 

Statistical accumulator (SACC), 263 

Statistical counter (SCTR), 263, 264 

Statistica1 operations, 255, 263 

Status bits, 184, 248-250 

Status indicators, 288 

Stimuli, 263, 264 

Stop, computer, 135, 196 


input-output, 185-191 

Storage, external (see External storage) 


interna1 (see Memory) 

number, 46-49 

saved by VFL, 76 


Storage allocation, 194, 198, 229 


Storage efficiency, 46-49 

Store che& counter, 240 

Store opera,tions, FLP, 115, 1 l 6  


VFL, 85-90 

Stored-program computers, IBM, 273, 


274 

Storing in memory, 84-90, 112, 180 


by look-ahead, 207, 229, 230, 241-247 

Storing instruction counter (see Instruc- 


tion counter) 

Strachey, C., 201 

Stream (see Data flow) 

Stretch, viii-xi, 1-7 

String of bits, memory as, 76, 259 

Subroutine, single instruction, 146, 147 

Subroutine linkage, 134 


by contro1 word, 177 

by execute, 147 

by rea l  address, 166 

by transit interrupt, 24, 26, 85-87 


Subscript digits, 68, 70 

Subsets, character, 62-65 

Subtraction, by complement, 208-210 


FLP, 95, 96 

of FLP singularities, 109, 110 

modified addition, 24, 84, 106, 130 

zero result, FLP, 96 


Sum (see Addition) 

Supervisory program, 8, 1 1, 194-200 

Suppression, of end-of-operation inter- 


rupt, 185, 286 

of instructions, 133 


Svigals, J., 274 

Swapping, 28, 126, 285 


examples, 145, 173-1 75 

Switch matrix, 208, 209, 259, 260 

Switching, within a program, 136 


among programs (see Multipro- 

gramming) 


Synchronization of computer with input- 

output, 184 


Synchronizer, disk, 20, 193, 203-205 

System design of 7030, vii, 5, 17-32 

Systematic instruction set, 9, 10, 130 


Table address assembler (TAA), 261-267 

Table base address, 53-55, 196 

Table entry, 53-56, 261, 267 

Table extract unit (TEU), 261, 262 

Table look-up, 53-56, 153, 255-257 


in 7951, 259-271 

(See also Editing) 


Tag (see Index address; Index flag) 

Tag bits, look-ahead, 239, 240 

Tagging, exponent overflow and under- 


flow, 98 




Tallying (see Counting, in memory) 
Tape, magnetic (see Magnetic tape) 

paper, delete code, 67, 68 

Tape-limited data processing, 48, 76 

Tape-operated printer, 189 

Technology, 1, 6, 7 

Telegraph or telephone line, 63, 179-190 

Termination, indexing, 153-160 


input-output operation, 252, 253 

(See aiso Stop) 


Ternary number system, 43, 46n. 

Test for termination, 153, 154 

Testing bits (see Bit test) 

Third-leve1 circuit, 219-221 

Three-address instruction, 123 

Tilde, modified, 70 

Time, accounting of, 194 


allocation of, 198 

elapsed (see Interval timer) 


Time alarm if in endless loop, 200 

Time clock, 31, 276 


in multiprogramming, 194-199 

Time-sharing, of CPU (see Multipro- 


gramming) 

in exchange, 248 


Timing in CPU, 204, 209 

Timing simulation, 218, 230-238 

Tonik, A. B., 201 

Tracing (program monitoring), 147-149 

Transfer (see Branching; Data trans- 


mission) 

Transfer bus counter, 240 

Transformation (see Table look-up) 

Transistor circuits, 1, 7, 216-223 

Transistorized computers, 1, 273 

Transit operation indicators, 290 

Transit register, 24, 87, 276 

Translation, code, 26, 53-56, 67 

Transmission (see Data transmission) 

Transposition, bit, 186, 303, 304 

Triangular matrix, 261 

True-complement switch, 208, 209 

True zero, 98, 109 

Truncated index address, 156, 157 

Truth tables, 88 

Turing machine, 267 

Two-address instruction, 123 

TX-2 computer (MIT Lincoln 


Laboratory), 201 

Type font, 62, 70 

Typewriter, 179, 187, 301 


character set, 62, 63 

keyboard, 68, 69 


Gnconditional branching, 28, 135, 283, 

284 


Underflow, 92 

exponent, 98-1 13 


USIVAC I, 134 

UNIVAC Scientific (1103), 123, 134n. 

Unnormalized FLP arithmetic (see 


Floating-point arithmetic) 

Unsigned numbers, 25, 26, 83 

Unusual condition, interrupt for, 252, 


253 

Upper boundary register, 31, 276 

Upper-case letter, 62-69 


Vacuum-tube computers, 273 

Value (see Index value) 

Van der Poel, W. L., 131 

Variable byte size, 79 

Variable field length (VFL) 75-91 


need for, 15, 36-39, 75, 76 

Variable FLP number length, 107 

Variable-length address, 129, 130, 167 

Variable-length instruc tions, l28 

Vector, 299 

Vector multiplication, 159, 160, 169 

VFL arithmetic and logic unit, 208, 209 

VFL data format, 33-39, 77-79 


logica1 fields, 34, 35, 89-91 

numbers, 34, 51, 80-83 

in radix conversion, 87 


VFL indicators, 84, 85 

VFL instruction format, 77, 126, 127, 


275 

VFL operations, 24-27, 85-91, 277-280 


(See also Immediate address; Progres- 

sive indexing) 


Virtual memory (see Look-ahead) 

Von Neumann, J., 43, 44, 51, 192 


Wadey, W. G., 100n. 

Wait, for input-output, 187, 188 


for program, 13, 135, 194 

Weather forecasting, 254 

Weaver, MT., 45n. 

Weighting in statistica1 operations, 255, 


263 

Weinberger, A., 15n. 

Wheeler, D. J., 134 

Whirlwind computer (MIT), 122 

Wilkes, M. V., 134n. 

Word, 7, 17, 39, 40 

Word address, 29, 35, 259, 260 


data, 181, 249-251 

(See also Address numbering) 


Word assembly and disassembly, 19, 

248-252 


Word boundary, 34-36 




Word boundary crossover, bytes, 79, 259 

fields, 25, 29, 76 

instructions, 21, 126 


Word-boundary crossover bit, 240 

Word length, power of two, 29,54,76, 


259 

related to instruction format, 123-125 


Writing, 29, 180-183 

in exchange, 250-252 


XFN (in finitesimal), 96-98, 108-1 13, 

292-299 


XFP (infinity), 96-98, 108-1 l 3  


Yes-no logic (see Logica1 operations) 

Zero, code, 68 

distinction of, 70 

division by, 26, 85-87, 110 

forced, 86 

multiplication by, 110-1 l 3  

nonsignificant, bits on tape, 71 

not unique in FLP, 96 

resetting to, 89, 90, 265, 286 

irue, 98, 109 

(See also Infinitesimal) 


Zero address, no data, 19, 276 

Zero delet'ion on tape, 37 

Zero fraction, 97, 98 

Zero index address, no indexing, 19 

Zero index count, 161, 166 

Zero tests after connective operation, 90 

Zone bits, 51, 68, 80, 83 
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